(理)已知點A(1,0),B(0,1)和互不相同的點P1,P2,P3,…,Pn,…,滿足,O為坐標原點,其中{an}、{bn}分別為等差數(shù)列和等比數(shù)列,P1是線段AB的中點,對于給定的公差不為零的an,都能找到唯一的一個bn,使得P1,P2,P3,…,Pn,…,都在一個指數(shù)函數(shù)    (寫出函數(shù)的解析式)的圖象上.
【答案】分析:設數(shù)列{an}的公差為d,{bn}的公比為q,因為P1,P2,P3,…Pn,是互不相同的點.由題意可得Pn(an,bn),又P1是AB中點,所以.所以.所以猜想是一個指數(shù)函數(shù),即為f(x)=ax,代入整理可得即a=.進而得到答案.
解答:解:設數(shù)列{an}的公差為d,{bn}的公比為q,因為P1,P2,P3,…Pn,是互不相同的點.
由題意可得,得Pn(an,bn),又P1是AB中點,
所以,即
所以
所以
所以猜想是一個指數(shù)函數(shù),即為f(x)=ax,
所以===
所以即a=
故答案為:
點評:本題主要考查知識間的滲透問題,是向量形式和坐標形式的相互轉化,點的橫縱坐標是一個數(shù)列進而利用數(shù)列知識研究其關系.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(理)已知點A(1,0),B(0,1)和互不相同的點P1,P2,P3,…,Pn,…,滿足
OPn
=an
OA
+bn
OB
(n∈N*)
,O為坐標原點,其中{an}、{bn}分別為等差數(shù)列和等比數(shù)列,P1是線段AB的中點,對于給定的公差不為零的an,都能找到唯一的一個bn,使得P1,P2,P3,…,Pn,…,都在一個指數(shù)函數(shù)
 
(寫出函數(shù)的解析式)的圖象上.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2008•楊浦區(qū)二模)(理)已知向量
a
=(x2+1,-x)
b
=(1,2
n2+1
)
(n為正整數(shù)),函數(shù)f(x)=
• 
,設f(x)在(0,+∞)上取最小值時的自變量x取值為an
(1)求數(shù)列{an}的通項公式;
(2)已知數(shù)列{bn},對任意正整數(shù)n,都有bn•(4an2-5)=1成立,設Sn為數(shù)列{bn}的前n項和,求
lim
n→∞
Sn
;
(3)在點列A1(1,a1)、A2(2,a2)、A3(3,a3)、…、An(n,an)、…中是否存在兩點Ai,Aj(i,j為正整數(shù))使直線AiAj的斜率為1?若存在,則求出所有的數(shù)對(i,j);若不存在,請你寫出理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(09年海淀區(qū)期末理)(14分)

       已知點A(0,1)、B(0,-1),P為一個動點,且直線PA、PB的斜率之積為

   (I)求動點P的軌跡C的方程;

   (II)設Q(2,0),過點(-1,0)的直線交于C于M、N兩點,的面積記為S,若對滿足條件的任意直線,不等式的最小值。

查看答案和解析>>

科目:高中數(shù)學 來源:楊浦區(qū)二模 題型:解答題

(理)已知向量
a
=(x2+1,-x)
,
b
=(1,2
n2+1
)
(n為正整數(shù)),函數(shù)f(x)=
• 
,設f(x)在(0,+∞)上取最小值時的自變量x取值為an
(1)求數(shù)列{an}的通項公式;
(2)已知數(shù)列{bn},對任意正整數(shù)n,都有bn•(4an2-5)=1成立,設Sn為數(shù)列{bn}的前n項和,求
lim
n→∞
Sn
;
(3)在點列A1(1,a1)、A2(2,a2)、A3(3,a3)、…、An(n,an)、…中是否存在兩點Ai,Aj(i,j為正整數(shù))使直線AiAj的斜率為1?若存在,則求出所有的數(shù)對(i,j);若不存在,請你寫出理由.

查看答案和解析>>

同步練習冊答案