【題目】已知函數(shù)

I若函數(shù)處取得極值,求曲線在點處的切線方程;

II若函數(shù)上的最小值是,求的值.

【答案】 ;4.

【解析】

試題分析:根據(jù)條件可得,求,再利用導數(shù)的幾何意義,曲線在處切線的斜率就是,這樣根據(jù)切點坐標和斜率寫出切線方程;先求函數(shù)的導數(shù),并且求函數(shù)的極值點,,分,,和三種情況討論函數(shù)的單調(diào)性,并且得到函數(shù)的最小值,分別令最小值為,求實數(shù)的值.

試題解析:

是函數(shù)的極值點, ,即,解得:,

,,

,,

所以在點處的切線方程為;

知,,

時,,

不合題意,

時,令,則有,或,令,則,

所以上遞增,在上遞減,在上遞增,

上的最小值為

,,解得:,

時,令,則有,或,令,則

上遞增,在上遞減,在上遞增,

,解得矛盾.

綜上所述:符合條件的的值為4.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】在對人們休閑方式的一次調(diào)查中,共調(diào)查了124人,其中女性70人,男性54人,女性中有43人主要的休閑方式是看電視,另外27人主要的休閑方式是運動;男性中有21人主要的休閑方式是看電視,另外33人主要的休閑方式是運動.

(Ⅰ)根據(jù)以上數(shù)據(jù)建立一個2×2列聯(lián)表;

(Ⅱ)能否在犯錯誤的概率不超過0.05的前提下認為性別與休閑方式有關(guān)系?

附:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義:在數(shù)列中,若為常數(shù))則稱為“等方差數(shù)列”,下列是對“等方差數(shù)列”的有關(guān)判斷( )

①若是“等方差數(shù)列”,在數(shù)列 是等差數(shù)列;

是“等方差數(shù)列”;

③若是“等方差數(shù)列”,則數(shù)列為常)也是“等方差數(shù)列”;

④若既是“等方差數(shù)列”又是等差數(shù)列,則該數(shù)列是常數(shù)數(shù)列.

其中正確命題的個數(shù)為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,以為圓心,橢圓的短半軸長為半徑的圓與直線相切.

1求橢圓的標準方程;

2已知點,和平面內(nèi)一點,過點任作直線與橢圓相交于兩點,設(shè)直線的斜率分別為,,試求滿足的關(guān)系式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】小明準備利用暑假時間去旅游,媽媽為小明提供四個景點,九寨溝、泰山、長白山、武夷山.小明決定用所學的數(shù)學知識制定一個方案來決定去哪個景點:(如圖)曲線和直線交于點.以為起點,再從曲線上任取兩個點分別為終點得到兩個向量,記這兩個向量的數(shù)量積為.若去九寨溝;若去泰山;若去長白山; 去武夷山.

(1)若從這六個點中任取兩個點分別為終點得到兩個向量,分別求小明去九寨溝的概率和去泰山的概率;

(2)按上述方案,小明在曲線上取點作為向量的終點,則小明決定去武夷山.點在曲線上運動,若點的坐標為,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的圖象上有一點列,點軸上的射影是,且 (), .

(1)求證: 是等比數(shù)列,并求出數(shù)列的通項公式;

(2)對任意的正整數(shù),當時,不等式恒成立,求實數(shù)的取值范圍.

(3)設(shè)四邊形的面積是,求證: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在人群流量較大的街道,有一中年人吆喝送錢,只見他手拿一黑色小布袋,袋中有3只黃色、3只白色的乒乓球(其體積、質(zhì)地完成相同),旁邊立著一塊小黑板寫道:

摸球方法:從袋中隨機摸出3個球,若摸得同一顏色的3個球,攤主送給摸球者5元錢;若摸得非同一顏色的3個球,摸球者付給攤主1元錢.

1)摸出的3個球為白球的概率是多少?

2)摸出的3個球為2個黃球1個白球的概率是多少?

3)假定一天中有100人次摸獎,試從概率的角度估算一下這個攤主一個月(按30天計)能賺多少錢?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】20名同學參加某次數(shù)學考試成績(單位:分)的頻率分布直方圖如下:

)求頻率分布直方圖中的值;

)分別求出成績落在, 中的學生人數(shù);

)從成績在的學生中任選2人,求此2人的成績都在中的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在某校舉行的航天知識競賽中,參與競賽的文科生與理科生人數(shù)之比為,且成績分布在,分數(shù)在以上(含的同學獲獎. 按文理科用分層抽樣的方法抽取人的成績作為樣本得到成績的頻率分布直方圖(見下圖).

(1)的值,并計算所抽取樣本的平均值同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);

(2)填寫下面的列聯(lián)表,能否有超過的把握認為獲獎與學生的文理科有關(guān)?

文科生

理科生

合計

獲獎

不獲獎

合計

附表及公式:

,其中

查看答案和解析>>

同步練習冊答案