【題目】在平面直角坐標(biāo)系中,拋物線的焦點為,點是拋物線上一點,且

(1)求的值;

(2)若為拋物線上異于的兩點,且.記點到直線的距離分別為,求的值.

【答案】(1);(2).

【解析】分析:(1)利用拋物線的定義求p的值.(2)先求出a的值,再聯(lián)立直線的方程和拋物線的方程得到韋達定理,再求|(y1+2) (y2+2)|的值.

詳解:(1)因為點A(1,a) (a>0)是拋物線C上一點,且AF=2,

所以1=2,所以p=2.

(2)由(1)得拋物線方程為y2=4x

因為點A(1,a) (a>0)是拋物線C上一點,所以a=2.

設(shè)直線AM方程為x-1=m (y-2) (m≠0),M(x1,y1),N(x2y2).

消去x,得y2-4m y+8m-4=0,

即(y-2)( y-4m+2)=0,所以y1=4m-2.

因為AMAN,所以-m,得y2=--2,

所以d1d2=|(y1+2) (y2+2)|=|4m×(-)|=16.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在多面體中,平面平面,四邊形為正方形,四邊形為梯形,且,,

(Ⅰ)求證:平面

(Ⅱ)求證:平面;

(Ⅲ)在線段上是否存在點,使得平面?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過拋物線E:x2=2py(p>0)的焦點F作斜率率分別為k1 , k2的兩條不同直線l1 , l2 , 且k1+k2=2.l1與E交于點A,B,l2與E交于C,D,以AB,CD為直徑的圓M,圓N(M,N為圓心)的公共弦所在直線記為l.
(1)若k1>0,k2>0,證明: ;
(2)若點M到直線l的距離的最小值為 ,求拋物線E的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】閱讀如圖所示的程序框圖,運行相應(yīng)的程序,輸出的結(jié)果i=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12分)

已知函數(shù),其中

)當(dāng),求曲線在點處的切線方程;

當(dāng)時,求函數(shù)的單調(diào)區(qū)間與極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知方程的四個根組成一個首項為的等差數(shù)列,則_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某個產(chǎn)品有若干零部件構(gòu)成,加工時需要經(jīng)過7道工序,分別記為.其中,有些工序因為是制造不同的零部件,所以可以在幾臺機器上同時加工;有些工序因為是對同一個零部件進行處理,所以存在加工順序關(guān)系,若加工工序必須要在工序完成后才能開工,則稱的緊前工序.現(xiàn)將各工序的加工次序及所需時間(單位:小時)列表如下:

工序

加工時間

3

4

2

2

2

1

5

緊前工序

現(xiàn)有兩臺性能相同的生產(chǎn)機器同時加工該產(chǎn)品,則完成該產(chǎn)品的最短加工時間是( )

(假定每道工序只能安排在一臺機器上,且不能間斷.)

A. 11個小時 B. 10個小時 C. 9個小時 D. 8個小時

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是某設(shè)計師設(shè)計的型飾品的平面圖,其中支架,兩兩成,,且.現(xiàn)設(shè)計師在支架上裝點普通珠寶,普通珠寶的價值為,且長成正比,比例系數(shù)為為正常數(shù));在區(qū)域(陰影區(qū)域)內(nèi)鑲嵌名貴珠寶,名貴珠寶的價值為,且的面積成正比,比例系數(shù)為.設(shè)

1)求關(guān)于的函數(shù)解析式,并寫出的取值范圍;

2)求的最大值及相應(yīng)的的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,墻上有一壁畫,最高點離地面4米,最低點離地面2米,觀察者從距離墻米,離地面高米的處觀賞該壁畫,設(shè)觀賞視角

(1)若問:觀察者離墻多遠時,視角最大?

(2)若當(dāng)變化時,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案