(2012•武昌區(qū)模擬)已知數(shù)列{an},{bn}滿足:a1=3,當n≥2時,an-1+an=4n;對于任意的正整數(shù)n,b1+2b2+…+2n-1bn=nan.設{bn}的前n項和為Sn
(Ⅰ)計算a2,a3,并求數(shù)列{an}的通項公式;
(Ⅱ)求滿足13<Sn<14的n的集合.
分析:(Ⅰ)在an-1+an=4n中,取n=2,得a1+a2=8,又a1=3,故a2=5.同樣可得a3=7.由an-1+an=4n及an+1+an=4(n+1)兩式相減可得:an+1-an-1=4,所以數(shù)列{an}的奇數(shù)項和偶數(shù)項各自成等差數(shù)列,公差為4,而a2-a1=2,故{an}是公差為2的等差數(shù)列,故可求數(shù)列{an}的通項公式;
(Ⅱ)利用b1+2b2+…+2n-1bn=nan,令n=1得b1=a1=3,b1+2b2+…+2nbn+1=(n+1)an+1,與b1+2b2+…+2n-1bn=nan兩式相減可得:2nbn+1=(n+1)an+1-nan=(n+1)(2n+3)-n(2n+1)=4n+3,,從而可求{bn}的通項公式,再利用錯位相減法求和,即可得出結論.
解答:解:(Ⅰ)在an-1+an=4n中,取n=2,得a1+a2=8,又a1=3,故a2=5.
同樣取n=3,可得a2+a3=12,∴a3=7.(2分)
由an-1+an=4n及an+1+an=4(n+1)兩式相減可得:an+1-an-1=4,
所以數(shù)列{an}的奇數(shù)項和偶數(shù)項各自成等差數(shù)列,公差為4,而a2-a1=2,故{an}是公差為2的等差數(shù)列,
∴an=2n+1.(5分)
(Ⅱ)在b1+2b2+…+2n-1bn=nan中,令n=1得b1=a1=3.(6分)
b1+2b2+…+2nbn+1=(n+1)an+1,與b1+2b2+…+2n-1bn=nan
兩式相減可得:2nbn+1=(n+1)an+1-nan=(n+1)(2n+3)-n(2n+1)=4n+3,
bn+1=
4n+3
2n
,即當n≥2時,bn=
4n-1
2n-1

經檢驗,b1=3也符合該式,所以,{bn}的通項公式為bn=
4n-1
2n-1
(9分)
Sn=3+7•
1
2
+…+(4n-1)•(
1
2
)n-1

1
2
Sn=3•
1
2
+7•(
1
2
)2+…+(4n-5)•(
1
2
)n-1+(4n-1)•(
1
2
)n

相減可得:
1
2
Sn=3+4[
1
2
+(
1
2
)2+…+(
1
2
)n-1]-(4n-1)•(
1
2
)n

利用等比數(shù)列求和公式并化簡得:Sn=14-
4n+7
2n-1
(11分)
可見,?n∈N+,Sn<14(12分)
經計算,S5=14-
27
16
<13,S6=14-
31
32
>13
,
注意到 {bn}的各項為正,故Sn單調遞增,所以滿足13<Sn<14的n的集合為{n|n≥6,n∈N}.(14分)
點評:本題考查數(shù)列與不等式的綜合,考查數(shù)列通項公式的求解,不等式的解法,考查轉化思想,計算能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2012•武昌區(qū)模擬)在圓x2+y2=4上,與直線l:4x+3y-12=0的距離最小值是
2
5
2
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•武昌區(qū)模擬)如圖,在四棱錐P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD,AB=
2
AD,E是線段PD上的點,F(xiàn)是線段AB上的點,且
PE
ED
=
BF
FA
=λ(λ>0)

(Ⅰ)當λ=1時,證明DF⊥平面PAC;
(Ⅱ)是否存在實數(shù)λ,使異面直線EF與CD所成的角為60°?若存在,試求出λ的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•武昌區(qū)模擬)設fk(x)=si
n
2k
 
x+co
s
2k
 
x(x∈R)
,利用三角變換,估計fk(x)在k=l,2,3時的取值情況,對k∈N*時推測fk(x)的取值范圍是
1
2k-1
fk(x) ≤1
1
2k-1
fk(x) ≤1
(結果用k表示).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•武昌區(qū)模擬)2011年武漢電視臺問政直播節(jié)日首場內容是“讓交通更順暢”.A、B、C、D四個管理部門的負責人接受問政,分別負責問政A、B、C、D四個管理部門的現(xiàn)場市民代表(每一名代表只參加一個部門的問政)人數(shù)的條形圖如下.為了了解市民對武漢市實施“讓交通更順暢”幾個月來的評價,對每位現(xiàn)場市民都進行了問卷調查,然后用分層抽樣的方法從調查問卷中抽取20份進行統(tǒng)計,統(tǒng)計結果如下面表格所示:
滿意 一般 不滿意
A部門 50% 25% 25%
B部門 80% 0 20%
C部門 50% 50% 0
D部門 40% 20% 40%
(I)若市民甲選擇的是A部門,求甲的調查問卷被選中的概率;
(11)若想從調查問卷被選中且填寫不滿意的市民中再選出2人進行電視訪談,求這兩人中至少有一人選擇的是D部門的概率.

查看答案和解析>>

同步練習冊答案