【題目】活水圍網(wǎng)養(yǎng)魚技術(shù)具有養(yǎng)密度高、經(jīng)濟(jì)效益好的特點(diǎn)研究表明:活水圍網(wǎng)養(yǎng)魚時(shí),某種魚在一定的條件下,每尾魚的平均生長(zhǎng)速度(單位:千克/年)是養(yǎng)殖密度(單位:尾/立方米)的函數(shù)當(dāng)不超過4(尾/立方米)時(shí),的值為(千克/年);當(dāng)時(shí),的一次函數(shù);當(dāng)達(dá)到(尾/立方米)時(shí),因缺氧等原因,的值為(千克/年)

(1)當(dāng)時(shí),求函數(shù)的表達(dá)式;

(2)當(dāng)養(yǎng)殖密度為多大時(shí),魚的年生長(zhǎng)量(單位:千克/立方米)可以達(dá)到最大,并求出最大值

【答案】(1)=

(2)當(dāng)養(yǎng)殖密度為10/立方米時(shí),魚的年生長(zhǎng)量可以達(dá)到最大,最大值約為千克/立方米.

【解析】

試題分析:1)由題意:當(dāng)時(shí),; 2

當(dāng)時(shí),設(shè),顯然是減函數(shù),

由已知得,解得 4

故函數(shù)

= 6

2)依題意并由(1)可得 8

當(dāng)時(shí),為增函數(shù),故; 10

當(dāng)時(shí),,

所以,當(dāng)時(shí),的最大值為 13分

當(dāng)養(yǎng)殖密度為10/立方米時(shí),魚的年生長(zhǎng)量可以達(dá)到最大,最大值約為千克/立方米.

14分

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國(guó)古代數(shù)學(xué)家劉徽是公元三世紀(jì)世界上最杰出的數(shù)學(xué)家,他在《九章算術(shù)圓田術(shù)》注中,用割圓術(shù)證明了圓面積的精確公式,并給出了計(jì)算圓周率的科學(xué)方法.所謂“割圓術(shù)”,即通過圓內(nèi)接正多邊形細(xì)割圓,并使正多邊形的周長(zhǎng)無限接近圓的周長(zhǎng),進(jìn)而來求得較為精確的圓周率(圓周率指圓周長(zhǎng)與該圓直徑的比率).劉徽計(jì)算圓周率是從正六邊形開始的,易知圓的內(nèi)接正六邊形可分為六個(gè)全等的正三角形,每個(gè)三角形的邊長(zhǎng)均為圓的半徑

,此時(shí)圓內(nèi)接正六邊形的周長(zhǎng)為

,此時(shí)若將圓內(nèi)接正六邊形的周長(zhǎng)等同于圓的周長(zhǎng),可得圓周率為3,當(dāng)用正二十四邊形內(nèi)接于圓時(shí),按照上述算法,可得圓周率為__________.(參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓經(jīng)過點(diǎn),且離心率為

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)是橢圓上的點(diǎn),直線為坐標(biāo)原點(diǎn))的斜率之積為.若動(dòng)點(diǎn)滿足,試探究是否存在兩個(gè)定點(diǎn)使得為定值?若存在的坐標(biāo);若不存在,請(qǐng)說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】端午節(jié)吃粽子是我國(guó)的傳統(tǒng)習(xí)俗.設(shè)一盤中裝有10個(gè)粽子,其中豆沙粽2個(gè),肉粽3個(gè),白粽5個(gè),這三種粽子的外觀完全相同.從中任意選取3個(gè).

(1)求三種粽子各取到1個(gè)的概率;

(2)設(shè)X表示取到的豆沙粽個(gè)數(shù),求X的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy上取兩個(gè)定點(diǎn) 再取兩個(gè)動(dòng)點(diǎn),,且

(Ⅰ)求直線交點(diǎn)M的軌跡C的方程;

(Ⅱ)過的直線與軌跡C交于P,Q,過P軸且與軌跡C交于另一點(diǎn)N,F為軌跡C的右焦點(diǎn),若,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】生活經(jīng)驗(yàn)告訴我們,當(dāng)水注進(jìn)容器(設(shè)單位時(shí)間內(nèi)進(jìn)水量相同)時(shí)水的高度隨著時(shí)間的變化而變化,在下圖中請(qǐng)選擇與容器相匹配的圖像,A對(duì)應(yīng)________;B對(duì)應(yīng)________;C對(duì)應(yīng)________;D對(duì)應(yīng)________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】空氣質(zhì)量指數(shù)(,簡(jiǎn)稱)是定量描述空氣質(zhì)量狀況的無量綱指數(shù),參與空氣質(zhì)量評(píng)價(jià)的主要污染物為等六項(xiàng).空氣質(zhì)量按照大小分為六級(jí):一級(jí)為優(yōu);二級(jí)為良好;三級(jí)為輕度污染;四級(jí)為中度污染;五級(jí)為重度污染;六級(jí)為嚴(yán)重污染.

某人根據(jù)環(huán)境監(jiān)測(cè)總站公布的數(shù)據(jù)記錄了某地某月連續(xù)10天的莖葉圖如圖所示:

1)利用訪樣本估計(jì)該地本月空氣質(zhì)量?jī)?yōu)良()的天數(shù);(按這個(gè)月總共30天計(jì)算);

(2)若從樣本中的空氣質(zhì)量不佳()的這些天中,隨機(jī)地抽取三天深入分析各種污染指標(biāo),求這三天的空氣質(zhì)量等級(jí)互不相同的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,AE⊥DE,CD⊥平面ADE,AB⊥平面ADE,CD=DA=6,AB=2,DE=3.

(1)求到平面的距離

(2)在線段上是否存在一點(diǎn),使?若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知長(zhǎng)方形ABCD中,AB3AD4.現(xiàn)將長(zhǎng)方形沿對(duì)角線BD折起,使ACa,得到一個(gè)四面體ABCD,如圖所示.

(1)試問:在折疊的過程中,直線ABCD能否垂直?若能,求出相應(yīng)a的值;若不能,請(qǐng)說明理由;

(2)求四面體ABCD體積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案