【題目】如圖,在直三棱柱中, 分別是棱的中點,點在線段上(包括兩個端點)運動.
(1)當為線段的中點時,
①求證:;②求平面與平面所成銳二面角的余弦值;
(2)求直線與平面所成的角的正弦值的取值范圍.
【答案】(1)①見解析;②;(2).
【解析】
(1)以為正交基底建立如圖所示的空間直角坐標系,
由向量法證明線線垂直和計算二面角。(2)設(),設直線與平面所成的角為由向量坐標法求得
設設由導數(shù)法求得范圍。
以為正交基底建立如圖所示的空間直角坐標系,
則 ,.
因為分別是棱的中點,所以
(1)當為線段的中點時,則
①因為 所以即
②因為設平面的一個法向量為
由 可得,取,則所以
又因為是平面的一個法向量,
設平面與平面所成的二面角的平面角為,
則 .因為為銳角,所以
所以平面與平面所成銳二面角的余弦值為
(2)因為在線段上,所以設(),解得,
所以.
因為設平面的一個法向量為
由可得,取則所以
設直線與平面所成的角為
則
因為所以設則
所以,設
則,設可求得的取值范圍為,
進一步可求得的取值范圍為
所以直線與平面所成的角的正弦值的取值范圍為.
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)=ax2﹣a﹣lnx,g(x)= ,其中a∈R,e=2.718…為自然對數(shù)的底數(shù).
(1)討論f(x)的單調性;
(2)證明:當x>1時,g(x)>0;
(3)確定a的所有可能取值,使得f(x)>g(x)在區(qū)間(1,+∞)內恒成立.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=ex﹣ax2﹣bx﹣1,其中a,b∈R,e=2.71828…為自然對數(shù)的底數(shù).
(1)設g(x)是函數(shù)f(x)的導函數(shù),求函數(shù)g(x)在區(qū)間[0,1]上的最小值;
(2)若f(1)=0,函數(shù)f(x)在區(qū)間(0,1)內有零點,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C的兩個頂點分別為A(2,0),B(2,0),焦點在x軸上,離心率為.
(Ⅰ)求橢圓C的方程;
(Ⅱ)點D為x軸上一點,過D作x軸的垂線交橢圓C于不同的兩點M,N,過D作AM的垂線交BN于點E.求證:△BDE與△BDN的面積之比為4:5.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】直線l:y=kx+1與圓O:x2+y2=1相交于A,B 兩點,則“k=1”是“△OAB的面積為 ”的( )
A.充分而不必要條件
B.必要而不充分條件
C.充分必要條件
D.既不充分又不必要條件
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在對人們的休閑方式的一次調查中,共調查了124人,其中女性70人,男性54人.女性中有43人主要的休閑方式是看電視,另外27人主要的休閑方式是運動;男性中有21人主要的休閑方式是看電視,另外33人主要的休閑方式是運動.
(1)根據(jù)以上數(shù)據(jù)建立一個2×2的列聯(lián)表;
(2)根據(jù)所給的獨立檢驗臨界值表,你最多能有多少把握認為性別與休閑方式有關系?附:獨立檢驗臨界值表
P(K2≥k0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】觀察下列各等式(i為虛數(shù)單位):
(cos 1+isin 1)(cos 2+isin 2)=cos 3+isin 3;
(cos 3+isin 3)(cos 5+isin 5)=cos 8+isin 8;
(cos 4+isin 4)(cos 7+isin 7)=cos 11+isin 11;
(cos 6+isin 6)(cos 6+isin 6)=cos 12+isin 12.
記f(x)=cos x+isin x.
猜想出一個用f (x)表示的反映一般規(guī)律的等式,并證明其正確性;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若函數(shù)f(x)=kax﹣a﹣x(a>0且a≠1)在(﹣∞,+∞)上既是奇函數(shù)又是增函數(shù),則函數(shù)g(x)=loga(x+k)的圖象是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設f(x)是定義在R上的函數(shù),它的圖象關于點(1,0)對稱,當x≤1時,f(x)=2xe﹣x(e為自然對數(shù)的底數(shù)),則f(2+3ln2)的值為( )
A.48ln2
B.40ln2
C.32ln2
D.24ln2
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com