為了尋找馬航MH370殘骸,我國(guó)“雪龍?zhí)枴笨瓶即?014年3月26日從港口O出發(fā),沿北偏東α角的射線OZ方向航行,而在港口北偏東β角的方向上有一個(gè)給科考船補(bǔ)給物資的小島A,OA=300
13
海里,且tanα=
1
3
,cosβ=
2
13
.現(xiàn)指揮部需要緊急征調(diào)位于港口O正東m海里的B處的補(bǔ)給船,速往小島A裝上補(bǔ)給物資供給科考船.該船沿BA方向全速追趕科考船,并在C處相遇.經(jīng)測(cè)算當(dāng)兩船運(yùn)行的航線與海岸線OB圍成的三角形OBC的面積S最小時(shí),這種補(bǔ)給方案最優(yōu).
(1)求S關(guān)于m的函數(shù)關(guān)系式S(m);
(2)應(yīng)征調(diào)位于港口正東多少海里處的補(bǔ)給船只,補(bǔ)給方案最優(yōu)?
考點(diǎn):解三角形的實(shí)際應(yīng)用
專題:應(yīng)用題,解三角形
分析:先以O(shè)為原點(diǎn),正北方向?yàn)檩S建立直角坐標(biāo)系.
(1)先求出直線OZ的方程,然后根據(jù)β的正余弦值和OA的距離求出A的坐標(biāo),進(jìn)而可以得到直線AB的方程,然后再與直線OZ的方程聯(lián)立求出C點(diǎn)的坐標(biāo),根據(jù)三角形的面積公式可得到答案.
(2)根據(jù)(1)中S(m)的關(guān)系式,進(jìn)行變形整理,然后利用基配方法求出最小值.
解答: 解:(1)以O(shè)點(diǎn)為原點(diǎn),正北的方向?yàn)閥軸正方向建立直角坐標(biāo)系,…(1分)
則直線OZ的方程為y=3x,
設(shè)點(diǎn)A(x0,y0),則x0=300
13
sinβ=900,y0=300
13
cosβ=600,
∴A(3a,2a),即A(900,600),…(3分)
又B(m,0),則直線AB的方程為:y=
600
900-m
(x-m),…(4分)
由此得到C點(diǎn)坐標(biāo)為:(
200m
m-700
,
600m
m-700
),…(6分)
∴S(m)=S△OBC=
1
2
|OB||yc|=
300m2
m-700
(m>700). …(8分)
(2)由(1)知S(m)=
300m2
m-700
=
300
-
700
m2
+
1
m
=
300
-700(
1
m
-
1
1400
)2+
1
2800
…(10分)
∴當(dāng)
1
m
=
1
1400
,即m=1400時(shí),S(m)最小,
∴征調(diào)m=1400海里處的船只時(shí),補(bǔ)給方案最優(yōu).…(14分)
點(diǎn)評(píng):本題考查解三角形的實(shí)際應(yīng)用、三角形的面積公式、配方法的應(yīng)用,解題的關(guān)鍵是函數(shù)的建模思想和轉(zhuǎn)化思想.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知兩直線y=4x-2和y=3m-x的交點(diǎn)在第三象限,則m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

為加快新能源汽車產(chǎn)業(yè)發(fā)展,推進(jìn)節(jié)能減排,國(guó)家對(duì)消費(fèi)者購(gòu)買新能源汽車給予補(bǔ)貼,其中對(duì)純電動(dòng)乘用車補(bǔ)貼標(biāo)準(zhǔn)如下表:
新能源汽車補(bǔ)貼標(biāo)準(zhǔn)
車輛類型 續(xù)駛里程R(公里)
80≤R<150 150≤R<250 R≥250
純電動(dòng)乘用車 3.5萬(wàn)元/輛 5萬(wàn)元/輛 6萬(wàn)元/輛
某校研究性學(xué)習(xí)小組,從汽車市場(chǎng)上隨機(jī)選取了M輛純電動(dòng)乘用車,根據(jù)其續(xù)駛里程R(單次充電后能行駛的最大里程)作出了頻率與頻數(shù)的統(tǒng)計(jì)表:
分組 頻數(shù) 頻率
80≤R<150 2 0.2
150≤R<250 5 x
R≥250 y z
合計(jì) M 1
(Ⅰ)求x,y,z,M的值;
(Ⅱ)若從這M輛純電動(dòng)乘用車中任選2輛,求選到的2輛車?yán)m(xù)駛里程都不低于150公里的概率;
(Ⅲ)若以頻率作為概率,設(shè)X為購(gòu)買一輛純電動(dòng)乘用車獲得的補(bǔ)貼,求X的分布列和數(shù)學(xué)期望EX.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,直線l:y=kx+b與拋物線x2=2py(常數(shù)p>0)相交于不同的兩點(diǎn)A(x1,y1)、B(x2,y2),且|x2-x1|=h(h為定值),線段AB的中點(diǎn)為D,與直線l:y=kx+b平行的切線的切點(diǎn)為C(不與拋物線對(duì)稱軸平行或重合且與拋物線只有一個(gè)公共點(diǎn)的直線稱為拋物線的切線,這個(gè)公共點(diǎn)為切點(diǎn)).
(1)用k、b表示出C點(diǎn)、D點(diǎn)的坐標(biāo),并證明CD垂直于x軸;
(2)求△ABC的面積,證明△ABC的面積與k、b無(wú)關(guān),只與h有關(guān);
(3)小張所在的興趣小組完成上面兩個(gè)小題后,小張連AC、BC,再作與AC、BC平行的切線,切點(diǎn)分別為E、F,小張馬上寫出了△ACE、△BCF的面積,由此小張求出了直線l與拋物線圍成的面積,你認(rèn)為小張能做到嗎?請(qǐng)你說(shuō)出理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左焦點(diǎn)為F1(-1,0),且點(diǎn)P(
6
2
,
1
2
)在橢圓C上.
(Ⅰ)求橢圓C的方程;
(Ⅱ)已知直線l:y=kx+m(k≠0)與橢圓C交于M,N兩點(diǎn),直線OM、ON的斜率存在且和為4k,求證:m2為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某中學(xué)將100名高一新生分成水平相同的甲、乙兩個(gè)“平行班”,每班50人,吳老師采用A、B兩種不同的教學(xué)方式分別在甲、乙兩個(gè)班進(jìn)行教學(xué)實(shí)驗(yàn).為了解教學(xué)效果,期末考試后,分別從兩個(gè)班級(jí)中各隨機(jī)抽取20名學(xué)生的成績(jī)進(jìn)行統(tǒng)計(jì),作出的莖葉圖如圖所示.記成績(jī)不低于90分者為“成績(jī)優(yōu)秀”.
(1)在乙班樣本的20個(gè)個(gè)體中,從不低于80分的成績(jī)中隨機(jī)抽取2個(gè),記隨機(jī)變量ξ為抽到“成績(jī)優(yōu)秀”的個(gè)數(shù),求ξ的分布列及數(shù)學(xué)期望Eξ;
(2)由以上統(tǒng)計(jì)數(shù)據(jù)填寫下面2×2列聯(lián)表,并判斷有多大把握認(rèn)為“成績(jī)優(yōu)秀”與教學(xué)方式有關(guān)?
 甲班(A方式)乙班(B方式)總計(jì)
成績(jī)優(yōu)秀   
成績(jī)不優(yōu)秀   
總計(jì)   

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知tanθ和cotθ是方程x2+kx+1=0的兩個(gè)根,當(dāng)|k|≥2時(shí),求tan4θ-cot4θ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an},{bn},{cn},已知a1=4,b1=3,c1=5,an+1=an,bn+1=
an+cn
2
,cn+1=
an+bn
2
(n∈N*).
(1)求數(shù)列{cn-bn}的通項(xiàng)公式;
(2)求證:對(duì)任意n∈N*,bn+cn為定值;
(3)設(shè)Sn為數(shù)列{cn}的前n項(xiàng)和,若對(duì)任意n∈N*,都有p•(Sn-4n)∈[1,3],求實(shí)數(shù)p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直角坐標(biāo)系xOy中,射線OA、OB關(guān)于x軸對(duì)稱,且∠AOB=60°,在射線OA、OB上分別有動(dòng)點(diǎn)P、Q滿足:S△POQ=9,設(shè)△POQ的重心為G.
(1)求G點(diǎn)的軌跡方程;
(2)點(diǎn)G到直線PQ距離的最大值是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案