設正值數(shù)列{an}的前n項和為Sn,滿足

(1)求a1,a2,a3

(2)求出數(shù)列{an}的通項公式(寫出推導過程)

(3)設求數(shù)列{bn}的前n項和Tn

答案:特殊到一般
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知數(shù)列an中,a1=1,a2=a-1(a≠1,a為實常數(shù)),前n項和Sn恒為正值,且當n≥2時,
1
Sn
=
1
an
-
1
an+1

(1)求證:數(shù)列Sn是等比數(shù)列;
(2)設an與an+2的等差中項為A,比較A與an+1的大。
(3)設m是給定的正整數(shù),a=2.現(xiàn)按如下方法構(gòu)造項數(shù)為2m有窮數(shù)列bn:當k=m+1,m+2,…,2m時,bk=ak•ak+1;當k=1,2,…,m時,bk=b2m-k+1.求數(shù)列{bn}的前n項和為Tn(n≤2m,n∈N*).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對于數(shù)列{xn},如果存在一個正整數(shù)m,使得對任意的n(n∈N*)都有xm+n=xn成立,那么就把這樣一類數(shù)列{xn}稱作周期為m的周期數(shù)列,m的最小正值稱作數(shù)列{xn}的最小正周期,以下簡稱周期.例如當xn=2時,{xn}是周期為1的周期數(shù)列;當yn=sin(
2
)
時,{yn}是周期為4的周期數(shù)列.設數(shù)列{an}滿足an+2=λ•an+1-an(n∈N*),a1=1,a2=20.
(1)若數(shù)列{an}是周期為3的周期數(shù)列,則常數(shù)λ的值是
-1
-1

(2)設數(shù)列{an}的前n項和為Sn,若λ=1,則S2012=
21
21

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年湖南省郴州市汝城一中高三(上)周練數(shù)學試卷(4)(理科)(解析版) 題型:填空題

對于數(shù)列{xn},如果存在一個正整數(shù)m,使得對任意的n(n∈N*)都有xm+n=xn成立,那么就把這樣一類數(shù)列{xn}稱作周期為m的周期數(shù)列,m的最小正值稱作數(shù)列{xn}的最小正周期,以下簡稱周期.例如當xn=2時,{xn}是周期為1的周期數(shù)列;當時,{yn}是周期為4的周期數(shù)列.設數(shù)列{an}滿足0.
(1)若數(shù)列{an}是周期為3的周期數(shù)列,則常數(shù)λ的值是    ;
(2)設數(shù)列{an}的前n項和為Sn,若λ=1,則S2012=   

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年江蘇省連云港市東?h高級中學高三(上)期末數(shù)學模擬試卷(一)(解析版) 題型:解答題

已知數(shù)列an中,a1=1,a2=a-1(a≠1,a為實常數(shù)),前n項和Sn恒為正值,且當n≥2時,
(1)求證:數(shù)列Sn是等比數(shù)列;
(2)設an與an+2的等差中項為A,比較A與an+1的大小;
(3)設m是給定的正整數(shù),a=2.現(xiàn)按如下方法構(gòu)造項數(shù)為2m有窮數(shù)列bn:當k=m+1,m+2,…,2m時,bk=ak•ak+1;當k=1,2,…,m時,bk=b2m-k+1.求數(shù)列bn的前n項和為Tn(n≤2m,n∈N*).

查看答案和解析>>

同步練習冊答案