【題目】在一次商貿(mào)交易會上,商家在柜臺開展促銷抽獎活動,甲、乙兩人相約同一天上午去該柜臺參與抽獎.

(1)若抽獎規(guī)則是從一個裝有個紅球和 個白球的袋中一次取出個球,當(dāng)兩個球同色時則中獎,求中獎概率;

(2)若甲計劃在之間趕到,乙計劃在之間趕到,求甲比乙提前到達(dá)的概率.

【答案】(1);(2)

【解析】

試題分析:(1)由題為古典概型,可先算出8個球取出2個的所有情況即(基本事件的個數(shù)),再算出取到2個為同色的基本事件數(shù);代入古典概率概率公式可求;

2)由題為時間問題,不可數(shù)。需化為幾何概型來解決。因為有2人,可建立直角坐標(biāo)系,化為面積比來算。

試題解析:(1)從袋中8個球中的摸出2個,試驗的結(jié)果共有(種)中獎的情況分為兩種:

i2個球都是紅色,包含的基本事件數(shù)為;

ii2個球都是白色,包含的基本事件數(shù)為

所以,中獎這個事件包含的基本事件數(shù)為25+9=34.因此,中獎概率為. (2)設(shè)兩人到達(dá)的時間分別為9點(diǎn)到10點(diǎn)之間的分鐘、分鐘.

表示每次試驗的結(jié)果,則所有可能結(jié)果為

記甲比乙提前到達(dá)為事件,則事件的可能結(jié)果為

如圖所示,試驗全部結(jié)果構(gòu)成區(qū)域Ω為正方形

而事件所構(gòu)成區(qū)域是正方形內(nèi)的陰影部分.

根據(jù)幾何概型公式,得到

所以,甲比乙提前到達(dá)的概率為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐PABC中,PAABPABC,ABBCPAABBC=2,D為線段AC的中點(diǎn),E為線段PC上一點(diǎn).

(1)求證:PABD;

(2)求證:平面BDE平面PAC;

(3)當(dāng)PA平面BDE時,求三棱錐EBCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|x﹣a|﹣2.
(Ⅰ)若a=1,求不等式f(x)+|2x﹣3|>0的解集;
(Ⅱ)若關(guān)于x的不等式f(x)<|x﹣3|恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】直線l1經(jīng)過點(diǎn)A(m,1),B(-3,4),直線l2經(jīng)過點(diǎn)C(1,m),D(-1,m+1),當(dāng)l1l2l1l2時,分別求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量 =(sinx,﹣1), =( cosx,﹣ ),函數(shù)f(x)=( ﹣2.
(Ⅰ)求函數(shù)f(x)的最小正周期T;
(Ⅱ)已知a,b,c分別為△ABC內(nèi)角A,B,C的對邊,其中A為銳角,a=2 ,c=4,且f(A)=1,求A,b和△ABC的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】直線過點(diǎn)P且與x軸、y軸的正半軸分別交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),是否存在這樣的直線滿足下列條件:①△AOB的周長為12②△AOB的面積為6.若存在,求出方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)全集U=R,集合 ,則集合A∩(UB)=(
A.{x|x>0}
B.{x|x<﹣3}
C.{x|﹣3<x≤﹣1}
D.{x|﹣1<x<0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線,

(1)系數(shù)為什么值時,方程表示通過原點(diǎn)的直線;

(2)系數(shù)滿足什么關(guān)系時與坐標(biāo)軸都相交;

(3)系數(shù)滿足什么條件時只與x軸相交;

(4)系數(shù)滿足什么條件時是x軸;

(5)設(shè)為直線上一點(diǎn),證明:這條直線的方程可以寫成

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=sin2x+sinx+cosx,以下說法中不正確的是(
A.f(x)周期為2π
B.f(x)最小值為﹣
C.f(x)在區(qū)間[0, ]單調(diào)遞增
D.f(x)關(guān)于點(diǎn)x= 對稱

查看答案和解析>>

同步練習(xí)冊答案