【題目】已知函數(shù)f(x)=|2x﹣1|.
(1)若不等式f(x+ )≥2m+1(m>0)的解集為(﹣∞,﹣2]∪[2,+∞),求實(shí)數(shù)m的值;
(2)若不等式f(x)≤2y+ +|2x+3|,對(duì)任意的實(shí)數(shù)x,y∈R恒成立,求實(shí)數(shù)a的最小值.

【答案】
(1)解:∵不等式f(x+ )≥2m+1(m>0)的解集為(﹣∞,﹣2]∪[2,+∞),

即|2(x+ )﹣1|≤2m+1 的解集為(﹣∞,﹣2]∪[2,+∞).

由|2x|≥2m+1,可得2x≥2m+1,或2x≤﹣2m﹣1,

求得 x≥m+ ,或x≤﹣m﹣

故|2(x+ )﹣1|≤2m+1 的解集為(﹣∞,﹣m﹣ ]∪[m+ ,+∞),

故有m+ =2,且﹣m﹣ =﹣2,

∴m=


(2)解:∵不等式f(x)≤2y+ +|2x+3|,對(duì)任意的實(shí)數(shù)x,y∈R恒成立,

∴|2x﹣1|≤2y+ +|2x+3|恒成立,

即|2x﹣1|﹣|2x+3|≤2y+ 恒成立,

故g(x)=|2x﹣1|﹣|2x+3|的最小值小于或等于2y+

∵|2x﹣1|﹣|2x+3|≤|2x﹣1﹣(2x+3)|=4,

∴4≤2y+ 恒成立,

∵2y+ ≥2

∴2 ≥4,

∴a≥4,

故實(shí)數(shù)a的最小值為4


【解析】(1)求得不等式f(x+ )≥2m+1(m>0)的解集,再結(jié)合不等式f(x+ )≥2m+1(m>0)的解集為(﹣∞,﹣2]∪[2,+∞),求得m的值.(2)由題意可得g(x)=|2x﹣1|﹣|2x+3|的最小值小于或等于2y+ ,再利用絕對(duì)值三角不等式求得g(x)的最小值為4,可得4≤2y+ 恒成立,再利用基本不等式求得2y+ 的最小值為2 ,可得2 ≥4,從而求得a的范圍.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)f(x)=sin(2x+φ)(|φ|< )向左平移 個(gè)單位后是奇函數(shù),則函數(shù)f(x)在[0, ]上的最小值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)關(guān)于x的一元二次方程,其中a,b是某范圍內(nèi)的隨機(jī)數(shù),分別在下列條件下,求上述方程有實(shí)根的概率.

(1)若隨機(jī)數(shù)a,b∈{1,2,3,4,5,6};

(2)若a是從區(qū)間[0,5]中任取的一個(gè)數(shù),b是從區(qū)間[2,4]中任取的一個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)橢圓C: =1(a>b>0)的焦點(diǎn)F1 , F2 , 過(guò)右焦點(diǎn)F2的直線(xiàn)l與C相交于P、Q兩點(diǎn),若△PQF1的周長(zhǎng)為短軸長(zhǎng)的2 倍.
(1)求C的離心率;
(2)設(shè)l的斜率為1,在C上是否存在一點(diǎn)M,使得 ?若存在,求出點(diǎn)M的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】交強(qiáng)險(xiǎn)是車(chē)主必須為機(jī)動(dòng)車(chē)購(gòu)買(mǎi)的險(xiǎn)種,若普通6座以下私家車(chē)投保交強(qiáng)險(xiǎn)第一年的費(fèi)用(基準(zhǔn)保費(fèi))統(tǒng)一為a元,在下一年續(xù)保時(shí),實(shí)行的是費(fèi)率浮動(dòng)機(jī)制,且保費(fèi)與上一年度車(chē)輛發(fā)生道路交通事故的情況相聯(lián)系.發(fā)生交通事故的次數(shù)越多,費(fèi)率也就越高,具體浮動(dòng)情況如下表:

交強(qiáng)險(xiǎn)浮動(dòng)因素和費(fèi)率浮動(dòng)比率表

浮動(dòng)因素

浮動(dòng)比率

A1

上一個(gè)年度未發(fā)生有責(zé)任道路交通事故

下浮10%

A2

上兩個(gè)年度未發(fā)生有責(zé)任道路交通事故

下浮20%

A3

上三個(gè)及以上年度未發(fā)生有責(zé)任道路交通事故

下浮30%

A4

上一個(gè)年度發(fā)生一次有責(zé)任不涉及死亡的道路交通事故

0%

A5

上一個(gè)年度發(fā)生兩次及兩次以上有責(zé)任道路交通事故

上浮10%

A6

上一個(gè)年度發(fā)生有責(zé)任道路交通死亡事故

上浮30%

某機(jī)構(gòu)為了研究某一品牌普通6座以下私家車(chē)的投保情況,隨機(jī)抽取了60輛車(chē)齡已滿(mǎn)三年該品牌同型號(hào)私家車(chē)的下一年續(xù)保時(shí)的情況,統(tǒng)計(jì)得到了下面的表格:

類(lèi)型

A1

A2

A3

A4

A5

A6

數(shù)量

10

5

5

20

15

5

(1)求一輛普通6座以下私家車(chē)在第四年續(xù)保時(shí)保費(fèi)高于基本保費(fèi)的頻率;

(2)某二手車(chē)銷(xiāo)售商專(zhuān)門(mén)銷(xiāo)售這一品牌的二手車(chē),且將下一年的交強(qiáng)險(xiǎn)保費(fèi)高于基本保費(fèi)的車(chē)輛記為事故車(chē).假設(shè)購(gòu)進(jìn)一輛事故車(chē)虧損5 000元,一輛非事故車(chē)盈利10 000元.且各種投保類(lèi)型的頻率與上述機(jī)構(gòu)調(diào)查的頻率一致,完成下列問(wèn)題:

①若該銷(xiāo)售商店內(nèi)有6輛(車(chē)齡已滿(mǎn)三年)該品牌二手車(chē),某顧客欲在店內(nèi)隨機(jī)挑選2輛車(chē),求這2輛車(chē)恰好有一輛為事故車(chē)的概率;

②若該銷(xiāo)售商一次購(gòu)進(jìn)120輛(車(chē)齡已滿(mǎn)三年)該品牌二手車(chē),求一輛車(chē)盈利的平均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= ,若對(duì)于定義域內(nèi)的任意x1 , 總存在x2使得f(x2)<f(x1),則滿(mǎn)足條件的實(shí)數(shù)a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=2sin(x+ )cosx.
(1)若0≤x≤ ,求函數(shù)f(x)的值域;
(2)設(shè)△ABC的三個(gè)內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,若A為銳角且f(A)= ,b=2,c=3,求cos(A﹣B)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)△ABC的內(nèi)角A,B,C所對(duì)邊的長(zhǎng)分別為a,b,c,則下列命題正確的是(寫(xiě)出所有正確命題的編號(hào)).
①若ab>c2 , 則C<
②若a+b>2c,則C<
③若a3+b3=c3 , 則C<
④若(a+b)c≤2ab,則C>
⑤若(a2+b2)c2≤2a2b2 , 則C>

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】經(jīng)調(diào)查發(fā)現(xiàn),人們長(zhǎng)期食用含高濃度甲基汞的魚(yú)類(lèi)會(huì)引起汞中毒,其中羅非魚(yú)體內(nèi)汞含量比其它魚(yú)偏高.現(xiàn)從一批數(shù)量很大的羅非魚(yú)中隨機(jī)地抽出15條作樣本,經(jīng)檢測(cè)得各條魚(yú)的汞含量的莖葉圖(以小數(shù)點(diǎn)前的數(shù)字為莖,小數(shù)點(diǎn)后一位數(shù)字為葉)如圖.《中華人民共和國(guó)環(huán)境保護(hù)法》規(guī)定食品的汞含量不得超過(guò)1.0ppm.
(Ⅰ)檢查人員從這15條魚(yú)中,隨機(jī)抽出3條,求3條中恰有1條汞含量超標(biāo)的概率;
(Ⅱ)若從這批數(shù)量很大的魚(yú)中任選3條魚(yú),記ξ表示抽到的汞含量超標(biāo)的魚(yú)的條數(shù).以此15條魚(yú)的樣本數(shù)據(jù)來(lái)估計(jì)這批數(shù)量很大的魚(yú)的總體數(shù)據(jù),求ξ的分布列及數(shù)學(xué)期望Eξ.

查看答案和解析>>

同步練習(xí)冊(cè)答案