分析 討論a>0時,函數(shù)y=f(x)在區(qū)間(0,$\frac{π}{2}$)上有且只有一個零點,
在區(qū)間($\frac{π}{2}$,π)上有且只有一個零點;求出f(x)在x∈[0,$\frac{π}{2}$]上的最大值;
a≤0時,函數(shù)f(x)在x∈(0,π)上無零點,從而求出f(x)的最大值.
解答 解:因為函數(shù)f(x)=asinx-$\frac{3}{2}$(a∈R),
且x∈(0,π)時,sinx∈(0,1];
所以當a>0時,asinx∈(0,a],
y=f(x)在區(qū)間(0,$\frac{π}{2}$)上單調(diào)遞增,函數(shù)f(x)在(0,$\frac{π}{2}$)上有且只有一個零點;
y=f(x)在區(qū)間($\frac{π}{2}$,π)上單調(diào)遞減,函數(shù)f(x)在($\frac{π}{2}$,π)上有且只有一個零點;
所以a-$\frac{3}{2}$>0,解得a>$\frac{3}{2}$;
所以f(x)在x∈[0,$\frac{π}{2}$]上的最大值是f($\frac{π}{2}$)=a-$\frac{3}{2}$;
a≤0時,f(x)=asinx-$\frac{3}{2}$<0在x∈(0,π)上恒成立,函數(shù)f(x)無零點,不合題意;
綜上,f(x)在x∈[0,$\frac{π}{2}$]上的最大值是a-$\frac{3}{2}$.
故答案為:a-$\frac{3}{2}$.
點評 本題主要考查了三角函數(shù)的單調(diào)性與函數(shù)零點的判定定理,是基礎(chǔ)題目.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | 0 | ||
C. | 1 | D. | 以上答案都有不對 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1個 | B. | 2個 | C. | 3個 | D. | 4個 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ①② | B. | ①④ | C. | ③④ | D. | 都不正確 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,0]∪[3,+∞) | B. | (-∞,1)∪[3,+∞) | C. | (-∞,1) | D. | (-∞,0] |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com