【題目】在平面真角坐標(biāo)系xOy中,曲線的參數(shù)方程為t為參數(shù)),以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸,建立根坐標(biāo)系.曲線的極坐標(biāo)方程為

(1)求曲線的普通方程和曲線的直角坐標(biāo)方程;

(2)若曲線與曲線交于MN兩點(diǎn),直線OMON的斜率分別為,求的值.

【答案】1,21

【解析】

1)消去t即可得的普通方程,通過移項(xiàng)和可得的普通方程;(2)由可得的幾何意義是斜率,將的參數(shù)方程代入的普通方程,得到關(guān)于t的方程且由韋達(dá)定理可得。

解:(1).由,(t為參數(shù)),消去參數(shù)t,得,即的普通方程為,由,得,即,

代入,得,即的直角坐標(biāo)方程為

(2).由t為參數(shù)),得,則的幾何意義是拋物線上的點(diǎn)(原點(diǎn)除外)與原點(diǎn)連線的斜率.由題意知,

,(t為參數(shù))代入,得

,且,且

設(shè)MN對(duì)應(yīng)的參數(shù)分別為、,則,,

所以

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司培訓(xùn)員工某項(xiàng)技能,培訓(xùn)有如下兩種方式:

方式一:周一到周五每天培訓(xùn)1小時(shí),周日測(cè)試

方式二:周六一天培訓(xùn)4小時(shí),周日測(cè)試

公司有多個(gè)班組,每個(gè)班組60人,現(xiàn)任選兩組記為甲組、乙組先培訓(xùn);甲組選方式一,乙組選方式二,并記錄每周培訓(xùn)后測(cè)試達(dá)標(biāo)的人數(shù)如表:

第一周

第二周

第三周

第四周

甲組

20

25

10

5

乙組

8

16

20

16

用方式一與方式二進(jìn)行培訓(xùn),分別估計(jì)員工受訓(xùn)的平均時(shí)間精確到,并據(jù)此判斷哪種培訓(xùn)方式效率更高?

在甲乙兩組中,從第三周培訓(xùn)后達(dá)標(biāo)的員工中采用分層抽樣的方法抽取6人,再?gòu)倪@6人中隨機(jī)抽取2人,求這2人中至少有1人來自甲組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點(diǎn)F與橢圓的右焦點(diǎn)重合,過焦點(diǎn)F的直線l交拋物線于A,B兩點(diǎn).

1)求拋物線C的方程;

2)記拋物線C的準(zhǔn)線與x軸的交點(diǎn)為H,試問:是否存在,使得,且成立?若存在,求實(shí)數(shù)的取值范圍;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),若過點(diǎn)可作三條直線與曲線相切,則實(shí)數(shù)的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,某種水箱用的“浮球”,是由兩個(gè)半球和一個(gè)圓柱筒組成.已知半球的直徑是6 cm,圓柱筒高為2 cm.

1這種“浮球”的體積是多少cm3結(jié)果精確到0.1?

2要在2 500個(gè)這樣的“浮球”表面涂一層膠,如果每平方米需要涂膠100克,那么共需膠多少克?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某手機(jī)廠商在銷售200萬臺(tái)某型號(hào)手機(jī)時(shí)開展“手機(jī)碎屏險(xiǎn)”活動(dòng)、活動(dòng)規(guī)則如下:用戶購(gòu)買該型號(hào)手機(jī)時(shí)可選購(gòu)“手機(jī)碎屏險(xiǎn)”,保費(fèi)為元,若在購(gòu)機(jī)后一年內(nèi)發(fā)生碎屏可免費(fèi)更換一次屏幕.該手機(jī)廠商將在這萬臺(tái)該型號(hào)手機(jī)全部銷售完畢一年后,在購(gòu)買碎屏險(xiǎn)且購(gòu)機(jī)后一年內(nèi)未發(fā)生碎屏的用戶中隨機(jī)抽取名,每名用戶贈(zèng)送元的紅包,為了合理確定保費(fèi)的值,該手機(jī)廠商進(jìn)行了問卷調(diào)查,統(tǒng)計(jì)后得到下表(其中表示保費(fèi)為元時(shí)愿意購(gòu)買該“手機(jī)碎屏險(xiǎn)”的用戶比例);

1)根據(jù)上面的數(shù)據(jù)求出關(guān)于的回歸直線方程;

2)通過大數(shù)據(jù)分析,在使用該型號(hào)手機(jī)的用戶中,購(gòu)機(jī)后一年內(nèi)發(fā)生碎屏的比例為.已知更換一次該型號(hào)手機(jī)屏幕的費(fèi)用為元,若該手機(jī)廠商要求在這次活動(dòng)中因銷售該“手機(jī)碎屏險(xiǎn)”產(chǎn)生的利潤(rùn)不少于萬元,能否把保費(fèi)定為5元?

x

10

20

30

40

50

y

0.79

0.59

0.38

0.23

0.01

參考公式:回歸方程中斜率和截距的最小二乘估計(jì)分別為,

參考數(shù)據(jù):表中5個(gè)值從左到右分別記為,相應(yīng)的值分別記為,經(jīng)計(jì)算有,其中,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

(1)若函數(shù)個(gè)零點(diǎn),求的取值范圍;

(2)若有兩個(gè)極值點(diǎn),且,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知是直角梯形,垂直于平面,

1)求直線與平面所成角的正弦值;

2)求平面與平面所成銳二面角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的最大值為(其中為自然對(duì)數(shù)的底數(shù)),的導(dǎo)函數(shù)。

(1)求的值;

(2)任取兩個(gè)不等的正數(shù),且,若存在正數(shù),使得成立。求證:。

查看答案和解析>>

同步練習(xí)冊(cè)答案