【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,Q為AD的中點(diǎn),M是棱PC上的點(diǎn),PA=PD=AD=2,BC=1,CD=
(1)求證:平面PQB⊥平面PAD;
(2)若PM=3MC,求二面角M﹣BQ﹣C的大。

【答案】
(1)證明:∵Q為AD的中點(diǎn),PA=PD=AD=2,BC=1,

∴PQ⊥AD,QD BC,

∴四邊形BCDQ是平行四邊形,∴DC∥QB,

∵底面ABCD為直角梯形,AD∥BC,∠ADC=90°,

∴BQ⊥AD,

又BQ∩PQ=Q,∴AD⊥平面PQB,

∵AD平面PAD,∴平面PQB⊥平面PAD


(2)證明:解:∵PQ⊥AD,平面PAD⊥底面ABCD,平面PAD∩底面ABCD=AD,

∴PQ⊥底面ABCD,

以Q為原點(diǎn),QA為x軸,QB為y軸,QP為z軸,建立空間直角坐標(biāo)系,

則Q(0,0,0),B(0, ,0),C(﹣1, ,0),P(0,0, ),

設(shè)M(a,b,c),則 ,即(a,b,c﹣ )= (﹣1, ,﹣ )=(﹣ , ,﹣ ),

,b= ,c= ,∴M(﹣ , ),

=(﹣ , , ), =(0, ,0),

設(shè)平面MQB的法向量 =(x,y,z),

,取x=1,得 =(1,0, ),

平面BQC的法向量 =(0,0,1),

設(shè)二面角M﹣BQ﹣C的平面角為θ,

則cosθ= = ,∴θ= ,

∴二面角M﹣BQ﹣C的大小為


【解析】(1)推導(dǎo)出四邊形BCDQ是平行四邊形,從而BQ⊥AD,進(jìn)而AD⊥平面PQB,由此能證明平面PQB⊥平面PAD.(2)以Q為原點(diǎn),QA為x軸,QB為y軸,QP為z軸,建立空間直角坐標(biāo)系,利用向量法能求出二面角M﹣BQ﹣C的大。
【考點(diǎn)精析】根據(jù)題目的已知條件,利用平面與平面垂直的判定的相關(guān)知識(shí)可以得到問題的答案,需要掌握一個(gè)平面過另一個(gè)平面的垂線,則這兩個(gè)平面垂直.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】狄利克雷函數(shù)是高等數(shù)學(xué)中的一個(gè)典型函數(shù),若,則稱為狄利克雷函數(shù).對(duì)于狄利克雷函數(shù),給出下面4個(gè)命題:①對(duì)任意,都有;②對(duì)任意,都有;③對(duì)任意,都有 ;④對(duì)任意,都有.其中所有真命題的序號(hào)是

A. ①④ B. ②③ C. ①②③ D. ①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知fx)是定義在R上的奇函數(shù)且f-2=-3,當(dāng)x≥0時(shí),fx=ax-1,其中a0a≠1.

1)求的值;

2)求函數(shù)fx)的解析式;

3)已知gx=log2x,若對(duì)任意的x1[1,4],存在使得fmx1)+1≥gx2)(其中m≥0)成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,某幾何體的三視圖(單位:cm)如圖所示,則該幾何體的體積為(cm3);表面積為(cm2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知F1 , F2是橢圓C: + =1的左、右焦點(diǎn).
(1)若點(diǎn)M在橢圓C上,且∠F1MF2=60°,求△F1MF2的面積;
(2)動(dòng)直線y=k(x+1)與橢圓C相交于A,B兩點(diǎn),點(diǎn)T(t,0),問是否存在t∈R,使得 為定值,若存在求出t的值,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在(1,+∞)上的函數(shù)fx)=

(1)當(dāng)m≠0時(shí),判斷函數(shù)fx)的單調(diào)性,并證明你的結(jié)論;

(2)當(dāng)m=時(shí),求解關(guān)于x的不等式fx2-1)>f(3x-3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面是菱形,且.點(diǎn)

是棱的中點(diǎn),平面與棱交于點(diǎn).

1)求證:;

2)若,且平面平面,求平面與平面所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知F1F2分別是雙曲線的左、右焦點(diǎn),且雙曲線C的實(shí)軸長(zhǎng)為6,離心率為

(1)求雙曲線C的標(biāo)準(zhǔn)方程;

(2)設(shè)點(diǎn)P是雙曲線C上任意一點(diǎn),且|PF1|=10,求|PF2|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)= +log2(6﹣x)的定義域是(
A.{x|x>6}
B.{x|﹣3<x<6}
C.{x|x>﹣3}
D.{x|﹣3≤x<6}

查看答案和解析>>

同步練習(xí)冊(cè)答案