證明:
1+sinα
cosα
-
cosα
1-sinα
=0
分析:把等式的左邊通分后,分子利用平方差公式化簡合并后求出值為0,等于等式的右邊,得證.
解答:證明:左邊=
(1+sinα)(1-sinα)-cos2α
cosα(1-sinα)

=
cos2α-cos2α
cosα(1-sinα)
=0=右邊.
1+sinα
cosα
-
cosα
1-sinα
=0
點(diǎn)評:此題考查了三角函數(shù)的恒等變換,掌握通分的關(guān)鍵是找出最簡公分母,是一道證明題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)A.(不等式選講選做題)若不等式|x+1|+|x-2|<a無實(shí)數(shù)解,則a的取值范圍是
 

B.(幾何證明選做題)如圖,⊙O的直徑AB=6cm,P是AB延長線上的一點(diǎn),過P點(diǎn)作⊙O的切線,切點(diǎn)為C,連接AC,若∠CPA=30°,PC=
 

C.(極坐標(biāo)參數(shù)方程選做題)曲線
x=cosα
y=1+sinα
(a為參數(shù))與曲線ρ2-2ρcosθ=0的交點(diǎn)個數(shù)為
 
個.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)A(不等式選做題)若x>0,y>0且x+2y=1,則
1
x
+
1
y
的取值范圍是
 

B(幾何證明選講選做題)如圖所示,圓O上一點(diǎn)C在直徑AB上的射影為D,CD=4,BD=8,則線段DO的長等于
 

C(坐標(biāo)系與參數(shù)方程選做題)曲線
x=2+cosθ
y=-1+sinθ
(θ為參數(shù))上一點(diǎn)P,過點(diǎn)A(-2,0) B(0,2)的直線記為L,則點(diǎn)P到直線L距離的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(考生注意:請在下列三題中任選一題作答,如果多做,則按所做的第一題評分)
A.(不等式選做題)不等式|2x-1|<3的解集為
(-1,2)
(-1,2)

B、(選修4-1幾何證明選講) 如圖所示,AC和AB分別是⊙O的切線,且OC=3,AB=4,延長AO到D點(diǎn),則△ABC的面積是
192
25
192
25

C.(坐標(biāo)系與參數(shù)方程選做題)參數(shù)方程
x=cosα
y=1+sinα
(α為參數(shù))化成普通方程為
x2+(y-1)2=1
x2+(y-1)2=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知tanB=
cos(C-B)sinA+sin(C-B)

(1)試判斷△ABC的形狀,并給出證明;
(2)若∠C=60°,AB=1,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(考生注意:只能從下列A、B、C三題中選做一題,如果多做,則按第一題評閱記分)
A.(坐標(biāo)系與參數(shù)方程選做題)曲線
x=cosα
y=1+sinα
(α為參數(shù))與曲線ρ2-2ρcosθ=0的交點(diǎn)個數(shù)為
2
2

B.(不等式選講選做題)設(shè)函數(shù)f(x)=
|x+1|+|x-2|-a
,若函數(shù)f(x)的定義域?yàn)镽,則實(shí)數(shù)a的取值范圍是
(-∞,3]
(-∞,3]

C.(幾何證明選講選做題)如圖,從圓O外一點(diǎn)A引圓的切線AD和割線ABC,已知AC=6,圓O的半徑為3,圓心O到AC的距離為
5
,則AD=
2
3
2
3

查看答案和解析>>

同步練習(xí)冊答案