【題目】某種設(shè)備隨著使用年限的增加,每年的維護(hù)費(fèi)相應(yīng)增加.現(xiàn)對(duì)一批該設(shè)備進(jìn)行調(diào)查,得到這批設(shè)備自購(gòu)入使用之日起,前五年平均每臺(tái)設(shè)備每年的維護(hù)費(fèi)用大致如下表:

年份(年)

1

2

3

4

5

維護(hù)費(fèi)(萬(wàn)元)

1.1

1.5

1.8

2.2

2.4

(Ⅰ)求關(guān)于的線性回歸方程;

(Ⅱ)若該設(shè)備的價(jià)格是每臺(tái)5萬(wàn)元,甲認(rèn)為應(yīng)該使用滿五年換一次設(shè)備,而乙則認(rèn)為應(yīng)該使用滿十年換一次設(shè)備,你認(rèn)為甲和乙誰(shuí)更有道理?并說(shuō)明理由.

(參考公式: .)

【答案】(Ⅰ); (Ⅱ)見解析.

【解析】

(Ⅰ)先算出,再由公式分別算,和線性回歸方程。

(Ⅱ)分別算出五年與十年的每臺(tái)設(shè)備的平均費(fèi)用,費(fèi)用越小越好。

(1)

,

所以回歸方程為.

(Ⅱ)若滿五年換一次設(shè)備,則由()知每年每臺(tái)設(shè)備的平均費(fèi)用為:

(萬(wàn)元),

若滿十年換一次設(shè)備,則由()知每年每臺(tái)設(shè)備的平均費(fèi)用大概為:

(萬(wàn)元),

因?yàn)?/span>,所以甲更有道理.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知公差不為0的等差數(shù)列{an}中,a1=2,且a2+1,a4+1,a8+1成等比數(shù)列.
(1)求數(shù)列{an}通項(xiàng)公式;
(2)設(shè)數(shù)列{bn}滿足bn= ,求適合方程b1b2+b2b3+…+bnbn+1= 的正整數(shù)n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知cosα= ,cos(α+β)=﹣ ,且α,β∈(0, ),則cos(α﹣β)的值等于(
A.﹣
B.
C.﹣
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定義在R上的函數(shù)f(x)為偶函數(shù),且滿足f(x)=f(x+2),f(﹣1)=1,若數(shù)列{an}的前n項(xiàng)和Sn滿足2Sn=an+1 , a1= ,則f(a5)+f(a6)=(
A.4
B.2
C.1
D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)的定義域?yàn)椋?,+∞),f′(x)為f(x)的導(dǎo)函數(shù),且滿足xf′(x)>f(x),則不等式(x﹣1)f(x+1)>f(x2﹣1)的解集是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知四邊形ABCD和BCEG均為直角梯形,AD∥BC,CE∥BG,且∠BCD=∠BCE= ,平面ABCD⊥平面BCEG,BC=CD=CE=2BG=2.

(1)證明:AG∥平面BDE;
(2)求二面角E﹣BD﹣G的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市為迎接“國(guó)家義務(wù)教育均衡發(fā)展”綜合評(píng)估,市教育行政部門在全市范圍內(nèi)隨機(jī)抽取了所學(xué)校,并組織專家對(duì)兩個(gè)必檢指標(biāo)進(jìn)行考核評(píng)分.其中分別表示“學(xué)校的基礎(chǔ)設(shè)施建設(shè)”和“學(xué)校的師資力量”兩項(xiàng)指標(biāo),根據(jù)評(píng)分將每項(xiàng)指標(biāo)劃分為(優(yōu)秀)、(良好)、(及格)三個(gè)等級(jí),調(diào)查結(jié)果如表所示.例如:表中“學(xué)校的基礎(chǔ)設(shè)施建設(shè)”指標(biāo)為等級(jí)的共有所學(xué)校.已知兩項(xiàng)指標(biāo)均為等級(jí)的概率為0.21.

(1)在該樣本中,若“學(xué)校的基礎(chǔ)設(shè)施建設(shè)”優(yōu)秀率是0.4,請(qǐng)?zhí)顚懴旅?/span>列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有的把握認(rèn)為“學(xué)校的基礎(chǔ)設(shè)施建設(shè)”和“學(xué)校的師資力量”有關(guān);

師資力量(優(yōu)秀)

師資力量(非優(yōu)秀)

合計(jì)

基礎(chǔ)設(shè)施建設(shè)(優(yōu)秀)

基礎(chǔ)設(shè)施建設(shè)(非優(yōu)秀)

合計(jì)

(2)在該樣本的“學(xué)校的師資力量”為等級(jí)的學(xué)校中,若,記隨機(jī)變量,求的分布列和數(shù)學(xué)期望.

附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為做好2022年北京冬季奧運(yùn)會(huì)的宣傳工作,組委會(huì)計(jì)劃從某大學(xué)選取若干大學(xué)生志愿者,某記者在該大學(xué)隨機(jī)調(diào)查了1000名大學(xué)生,以了解他們是否愿意做志愿者工作,得到的數(shù)據(jù)如表所示:

愿意做志愿者工作

不愿意做志愿者工作

合計(jì)

男大學(xué)生

610

女大學(xué)生

90

合計(jì)

800

(1)根據(jù)題意完成表格;

(2)是否有的把握認(rèn)為愿意做志愿者工作與性別有關(guān)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下表是某廠生產(chǎn)某種產(chǎn)品的過程中記錄的幾組數(shù)據(jù),其中表示產(chǎn)量(單位:噸),表示生產(chǎn)中消耗的煤的數(shù)量(單位:噸).

(1)試在給出的坐標(biāo)系下作出散點(diǎn)圖,根據(jù)散點(diǎn)圖判斷,在中,哪一個(gè)方程更適合作為變量關(guān)于的回歸方程模型?(給出判斷即可,不需要說(shuō)明理由)

(2)根據(jù)(1)的結(jié)果以及表中數(shù)據(jù),建立變量關(guān)于的回歸方程.并估計(jì)生產(chǎn)噸產(chǎn)品需要準(zhǔn)備多少噸煤.參考公式:.

查看答案和解析>>

同步練習(xí)冊(cè)答案