【題目】已知數(shù)列{an}的前n項和為Sn,對任意的正整數(shù)n,都有Snann-3成立.

(1)求證:存在實數(shù)λ使得數(shù)列{anλ}為等比數(shù)列;

(2)求數(shù)列{nan}的前n項和Tn.

【答案】(1)見解析(2)

【解析】試題分析:(1)先根據(jù)和項與通項公式得項之間遞推關(guān)系an=3an-1-2,再構(gòu)造an-1=3(an-1-1),由等比數(shù)列定義確定結(jié)論,(2)因為數(shù)列為等差與等比乘積型,所以利用錯位相減法求數(shù)列{nan}的前n項和Tn.

試題解析:(1)證明:因為Snann-3,①

所以當n=1時,S1a1+1-3,所以a1=4.

n≥2時,Sn-1an-1n-1-3,②

由①②兩式相減得ananan-1+1,即

an=3an-1-2(n≥2).變形得an-1=3(an-1-1),而a1-1=3,

所以數(shù)列{an-1}是首項為3,公比為3的等比數(shù)列,

所以存在實數(shù)λ=-1,使得數(shù)列{an-1}為等比數(shù)列.

(2)由(1)得an-1=3·3n-1=3n,

所以an=3n+1,nann·3nn,所以Tn=(1×31+2×32+3×33+…+n×3n)+(1+2+3+…+n),

Vn=1×31+2×32+3×33+…+n×3n,③

則3Vn=1×32+2×33+3×34+…+n×3n+1,④

由③④兩式相減得

-2Vn=3+32+33+…+3nn×3n+1n×3n+1·3n+1,

所以Vn·3n+1,

Tn·3n+1.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知正項數(shù)列的前n項和為,對于任意的,都有.

1)求;

2)求數(shù)列的通項公式;

3)令問是否存在正數(shù)m,使得對一切正整數(shù)n都成立?若存在,求出m的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】樹立和踐行“綠水青山就是金山銀山,堅持人與自然和諧共生”的理念越來越深入人心,已形成了全民自覺參與,造福百姓的良性循環(huán).據(jù)此,某網(wǎng)站退出了關(guān)于生態(tài)文明建設(shè)進展情況的調(diào)查,調(diào)查數(shù)據(jù)表明,環(huán)境治理和保護問題仍是百姓最為關(guān)心的熱點,參與調(diào)查者中關(guān)注此問題的約占.現(xiàn)從參與關(guān)注生態(tài)文明建設(shè)的人群中隨機選出200人,并將這200人按年齡分組:第1組,第2組,第3組,第4組,第5組,得到的頻率分布直方圖如圖所示.

(1)求出的值;

(2)求這200人年齡的樣本平均數(shù)(同一組數(shù)據(jù)用該區(qū)間的中點值作代表)和中位數(shù)(精確到小數(shù)點后一位);

(3)現(xiàn)在要從年齡較小的第1,2組中用分層抽樣的方法抽取5人,再從這5人中隨機抽取3人進行問卷調(diào)查,求這2組恰好抽到2人的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知, 是橢圓的左右焦點, 為橢圓的上頂點,點在橢圓上,直線軸的交點為 為坐標原點,且,

(1)求橢圓的方程;

(2)過點作兩條互相垂直的直線分別與橢圓交于, 兩點(異于點),證明:直線過定點,并求該定點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)的導(dǎo)函數(shù)f '(x)的圖象如圖所示,f(-1)=f(2)=3,g(x)=(x-1)f(x),則不等式g(x)≥3x-3的解集是( )

A. [-1,1][2,+∞)B. (-∞,-1][1,2]

C. (-∞,-1][2,+∞)D. [-1,2]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在甲、乙兩個盒子中分別裝有編號為1,2,3,4的四個形狀相同的小球,現(xiàn)從甲、乙兩個盒子中各取出2個小球,每個小球被取出的可能性相等.

1)求從甲盒中取出的兩個球上的編號不都是奇數(shù)的概率;

2)求從甲盒取出的小球上編號之和與從乙盒中取出的小球上編號之和相等的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,曲線與坐標軸的交點都在圓C.

1)求圓C的方程;

2)若圓C與直線交于AB兩點,且,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知等差數(shù)列{an}的前n項和為Sn,若Sm-1=-4,Sm=0,Sm+2=14(m≥2,且m∈N*).

(1)求m的值;

(2)若數(shù)列{bn}滿足=log2bn(n∈N*),求數(shù)列{(an+6)·bn}的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】關(guān)于函數(shù),下列說法正確的是(

A.是函數(shù)的零點,則的整數(shù)倍

B.函數(shù)的圖象關(guān)于點對稱

C.函數(shù)的圖象與函數(shù)的圖象相同

D.函數(shù)的圖象可由的圖象先向上平移個單位長度,再向左平移個單位長度得到

查看答案和解析>>

同步練習冊答案