【題目】(本小題滿分12分)某工廠某種產(chǎn)品的年固定成本為250萬元,每生產(chǎn)千件,需另投入成本為,當年產(chǎn)量不足80千件時,(萬元).當年產(chǎn)量不小于80千件時,(萬元).每件商品售價為0.05萬元.通過市場分析,該廠生產(chǎn)的商品能全部售完.(Ⅰ)寫出年利潤(萬元)關于年產(chǎn)量(千件)的函數(shù)解析式;

(Ⅱ)年產(chǎn)量為多少千件時,該廠在這一商品的生產(chǎn)中所獲利潤最大?

【答案】(1);(2)100.

【解析】試題分析:()分兩種情況進行研究,當0x80時,投入成本為Cx=(萬元),根據(jù)年利潤=銷售收入成本,列出函數(shù)關系式,當x≥80時,投入成本為Cx=51x+,根據(jù)年利潤=銷售收入成本,列出函數(shù)關系式,最后寫成分段函數(shù)的形式,從而得到答案;

)根據(jù)年利潤的解析式,分段研究函數(shù)的最值,當0x80時,利用二次函數(shù)求最值,當x≥80時,利用基本不等式求最值,最后比較兩個最值,即可得到答案.

解:(每件商品售價為0.05萬元,

∴x千件商品銷售額為0.05×1000x萬元,

0x80時,根據(jù)年利潤=銷售收入成本,

∴Lx=0.05×1000x﹣10x﹣250=+40x﹣250;

x≥80時,根據(jù)年利潤=銷售收入成本,

∴Lx=0.05×1000x﹣51x﹣+1450﹣250=1200﹣x+).

綜合①②可得,Lx=

)由()可知,

0x80時,Lx=+40x﹣250=﹣,

x=60時,Lx)取得最大值L60=950萬元;

x≥80時,Lx=1200﹣x+≤1200﹣2=1200﹣200=1000,

當且僅當x=,即x=100時,Lx)取得最大值L100=1000萬元.

綜合①②,由于9501000

當產(chǎn)量為100千件時,該廠在這一商品中所獲利潤最大,最大利潤為1000萬元.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)滿足:
①對任意實數(shù)m,n都有f(m+n)+f(m﹣n)=2f(m)f(n);
②對任意m∈R,都有f(1+m)=f(1﹣m)恒成立;
③f(x)不恒為0,且當0<x<1時,f(x)<1.
(1)求f(0),f(1)的值;
(2)判斷函數(shù)f(x)的奇偶性,并給出你的證明;
(3)定義:“若存在非零常數(shù)T,使得對函數(shù)g(x)定義域中的任意一個x,均有g(x+T)=g(x),則稱g(x)為以T為周期的周期函數(shù)”.試證明:函數(shù)f(x)為周期函數(shù),并求出 的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,邊長為2的正方形ABCD中,點E是AB的中點,點F是BC的中點,將△AED、△DCF分別沿DE、DF折起,使A、C兩點重合于點A′,連接EF,A′B.

(1)求證:A′D⊥EF;
(2)求二面角A′﹣EF﹣D的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù)y=2sin(2x+φ)的圖象過點( ,1),則它的一條對稱軸方程可能是(
A.x=
B.x=
C.x=
D.x=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】,.

(1)令,求的單調(diào)區(qū)間;

(2)已知處取得極大值.求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了在冬季供暖時減少能量損耗,房屋的屋頂和外墻需要建造隔熱層,某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬元,該建筑物每年的能源消耗費用(單位:萬元)與隔熱層厚度(單位:)滿足關系:,若不建隔熱層,每年能源消耗費用為8萬元,設為隔熱層建造費用與20年的能源消耗費用之和.

(1)求的值及的表達式;

(2)隔熱層修建多厚時,總費用達到最小,并求最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給出下列命題:①y= 是奇函數(shù);
②若α,β是第一象限角,且α>β,則cosα<cosβ;
③函數(shù)f(x)=2xx2在R上有3個零點;
④函數(shù)y=sin2x的圖象向左平移 個單位,得到函數(shù) 的圖象.
其中正確命題的序號是 . (把正確命題的序號都填上)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的一個焦點為,離心率為.

1)求橢圓的標準方程;

2)若動點為橢圓外一點,且點到橢圓的兩條切線相互垂直,求點的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】經(jīng)過長期觀測得到:在交通繁忙的時段內(nèi),某公路汽車的車流量y(千輛/h)與汽車的平均速度v(km/h)之間的函數(shù)關系式為 . (I)若要求在該段時間內(nèi)車流量超過2千輛/h,則汽車在平均速度應在什么范圍內(nèi)?
(II)在該時段內(nèi),當汽車的平均速度v為多少時,車流量最大?最大車流量為多少?

查看答案和解析>>

同步練習冊答案