【題目】已知點(diǎn)是拋物線的準(zhǔn)線上一點(diǎn),F為拋物線的焦點(diǎn),P為拋物線上的點(diǎn),且,若雙曲線C中心在原點(diǎn),F是它的一個焦點(diǎn),且過P點(diǎn),當(dāng)m取最小值時,雙曲線C的離心率為______.

【答案】

【解析】

由點(diǎn)坐標(biāo)可確定拋物線方程,由此得到坐標(biāo)和準(zhǔn)線方程;過作準(zhǔn)線的垂線,垂足為,根據(jù)拋物線定義可得,可知當(dāng)直線與拋物線相切時,取得最小值;利用拋物線切線的求解方法可求得點(diǎn)坐標(biāo),根據(jù)雙曲線定義得到實(shí)軸長,結(jié)合焦距可求得所求的離心率.

是拋物線準(zhǔn)線上的一點(diǎn)

拋物線方程為 ,準(zhǔn)線方程為

作準(zhǔn)線的垂線,垂足為,則

設(shè)直線的傾斜角為,則

當(dāng)取得最小值時,最小,此時直線與拋物線相切

設(shè)直線的方程為,代入得:

,解得:

雙曲線的實(shí)軸長為,焦距為

雙曲線的離心率

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了調(diào)查一款手機(jī)的使用時間,研究人員對該款手機(jī)進(jìn)行了相應(yīng)的測試,將得到的數(shù)據(jù)統(tǒng)計如下圖所示:

并對不同年齡層的市民對這款手機(jī)的購買意愿作出調(diào)查,得到的數(shù)據(jù)如下表所示:

愿意購買該款手機(jī)

不愿意購買該款手機(jī)

總計

40歲以下

600

40歲以上

800

1000

總計

1200

1)根據(jù)圖中的數(shù)據(jù),試估計該款手機(jī)的平均使用時間;

2)請將表格中的數(shù)據(jù)補(bǔ)充完整,并根據(jù)表中數(shù)據(jù),判斷是否有999%的把握認(rèn)為愿意購買該款手機(jī)市民的年齡有關(guān).

參考公式:,其中

參考數(shù)據(jù):

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的圖象關(guān)于直線對稱,則函數(shù)的單調(diào)遞增區(qū)間為( )

A.(02)B.[0,1)C.(﹣∞,1]D.(01]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)討論函數(shù)的單調(diào)性;

2)設(shè),若對,恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】用計算機(jī)生成隨機(jī)數(shù)表模擬預(yù)測未來三天降雨情況,規(guī)定1,2,3表示降雨,4,5,67,89表示不降雨,根據(jù)隨機(jī)生成的10組三位數(shù):654 439 565 918 288 674 374 968 224 337,則預(yù)計未來三天僅有一天降雨的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正四棱錐中,.

1)求證:平面;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形是矩形,,,,分別為,上的一點(diǎn),且,,將矩形卷成以,為母線的圓柱的半個側(cè)面,且,分別為圓柱的上、下底面的直徑.

1)求證:平面平面;

2)求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列對任意都有(其中、是常數(shù)) .

(Ⅰ)當(dāng),時,求;

(Ⅱ)當(dāng),,時,若,,求數(shù)列的通項公式;

(Ⅲ)若數(shù)列中任意(不同)兩項之和仍是該數(shù)列中的一項,則稱該數(shù)列是“封閉數(shù)列”.當(dāng),,時,設(shè)是數(shù)列的前項和,,試問:是否存在這樣的“封閉數(shù)列”,使得對任意,都有,且.若存在,求數(shù)列的首項的所有取值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

(1)當(dāng)時,若關(guān)于的不等式恒成立,求的取值范圍;

(2)當(dāng)時,證明: .

查看答案和解析>>

同步練習(xí)冊答案