”是“”的(  )條件

A.充分而不必要                         B.必要而不充分

C.充要                                 D.既不充分也不必要

 

【答案】

A

【解析】

試題分析:肯定能推出,但是當(dāng)時(shí)不一定有,也可能,所以“”是“”的充分不必要條件.

考點(diǎn):本小題主要考查充分條件、必要條件的判斷.

點(diǎn)評(píng):要判斷充分條件、必要條件,首先要分清條件和結(jié)論.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線(xiàn)C1:y=x2,橢圓C2:x2+
y24
=1.
(1)設(shè)l1,l2是C1的任意兩條互相垂直的切線(xiàn),并設(shè)l1∩l2=M,證明:點(diǎn)M的縱坐標(biāo)為定值;
(2)在C1上是否存在點(diǎn)P,使得C1在點(diǎn)P處切線(xiàn)與C2相交于兩點(diǎn)A、B,且AB的中垂線(xiàn)恰為C1的切線(xiàn)?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•江門(mén)二模)市民李生居住在甲地,工作在乙地,他的小孩就讀的小學(xué)在丙地,三地之間的道路情況如圖所示.假設(shè)工作日不走其它道路,只在圖示的道路中往返,每次在路口選擇道路是隨機(jī)的.同一條道路去程與回程是否堵車(chē)互不影響.假設(shè)李生早上需要先開(kāi)車(chē)送小孩去丙地小學(xué),再返回經(jīng)甲地趕去乙地上班,
(1)寫(xiě)出李生可能走的所有路線(xiàn);(比如DDA表示走D路從甲到丙,再走D路回到甲,然后走A路到達(dá)乙);
(2)假設(shè)從甲到乙方向的道路B和從丙到甲方向的道路D道路擁堵,其它方向均通暢,但李生不知道相關(guān)信息,那么從出發(fā)到回到上班地沒(méi)有遇到過(guò)擁堵的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•江門(mén)二模)市民李生居住在甲地,工作在乙地,他的小孩就讀的小學(xué)在丙地,三地之間的道路情況如圖所示.假設(shè)工作日不走其它道路,只在圖示的道路中往返,每次在路口選擇道路是隨機(jī)的.同一條道路去程與回程是否堵車(chē)相互獨(dú)立.假設(shè)李生早上需要先開(kāi)車(chē)送小孩去丙地小學(xué),再返回經(jīng)甲地趕去乙地上班.假設(shè)道路A、B、D上下班時(shí)間往返出現(xiàn)擁堵的概率都是
1
10
,道路C、E上下班時(shí)間往返出現(xiàn)擁堵的概率都是
1
5
,只要遇到擁堵上學(xué)和上班的都會(huì)遲到.

(1)求李生小孩按時(shí)到校的概率;
(2)李生是否有七成把握能夠按時(shí)上班?
(3)設(shè)ξ表示李生下班時(shí)從單位乙到達(dá)小學(xué)丙遇到擁堵的次數(shù),求ξ的均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿(mǎn)分14分)已知拋物線(xiàn)

   (1)設(shè)是C1的任意兩條互相垂直的切線(xiàn),并設(shè),證明:點(diǎn)M的縱坐標(biāo)為定值;

   (2)在C1上是否存在點(diǎn)P,使得C1在點(diǎn)P處切線(xiàn)與C2相交于兩點(diǎn)A、B,且AB的中垂線(xiàn)恰為C1的切線(xiàn)?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

市民李生居住在甲地,工作在乙地,他的小孩就讀的小學(xué)在丙地,三地之間的道路情況如圖所示.假設(shè)工作日不走其它道路,只在圖示的道路中往返,每次在路口選擇道路是隨機(jī)的.同一條道路去程與回程是否堵車(chē)相互獨(dú)立.假設(shè)李生早上需要先開(kāi)車(chē)送小孩去丙地小學(xué),再返回經(jīng)甲地趕去乙地上班.假設(shè)道路A、B、D上下班時(shí)間往返出現(xiàn)擁堵的概率都是數(shù)學(xué)公式,道路C、E上下班時(shí)間往返出現(xiàn)擁堵的概率都是數(shù)學(xué)公式,只要遇到擁堵上學(xué)和上班的都會(huì)遲到.

(1)求李生小孩按時(shí)到校的概率;
(2)李生是否有七成把握能夠按時(shí)上班?
(3)設(shè)ξ表示李生下班時(shí)從單位乙到達(dá)小學(xué)丙遇到擁堵的次數(shù),求ξ的均值.

查看答案和解析>>

同步練習(xí)冊(cè)答案