【題目】已知拋物線過點,是拋物線上不同兩點,且(其中是坐標原點),直線與交于點,線段的中點為.
(Ⅰ)求拋物線的準線方程;
(Ⅱ)求證:直線與軸平行.
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C:的焦距為2,左頂點與上頂點連線的斜率為.
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)過點P(m,0)作圓x2+y2=1的一條切線l交橢圓C于M,N兩點,當|MN|的值最大時,求m的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四邊形是梯形,四邊形是矩形,且平面平面,,,是線段上的動點.
(1)試確定點的位置,使平面,并說明理由;
(2)在(1)的條件下,求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),,.
(Ⅰ)當時,求曲線在處的切線方程;
(Ⅱ)求的單調區(qū)間;
(Ⅲ)設,若對于任意,總存在,使得成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}滿足:a1+a2+a3+…+an=n-an,(n=1,2,3,…)
(Ⅰ)求證:數(shù)列{an-1}是等比數(shù)列;
(Ⅱ)令bn=(2-n)(an-1)(n=1,2,3,…),如果對任意n∈N*,都有bn+t≤t2,求實數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點是單位正方體的對角面上的一動點,過點作垂直于平面的直線,與正方體的側面相交于、兩點,則的面積的最大值為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了打好“精準扶貧攻堅戰(zhàn)”某村扶貧書記打算帶領該村農民種植新品種蔬菜,可選擇的種植量有三種:大量種植,適量種植,少量種植.根據(jù)收集到的市場信息,得到該地區(qū)該品種蔬菜年銷量頻率分布直方圖如圖,然后,該扶貧書記同時調查了同類其他地區(qū)農民以往在各種情況下的平均收入如表1(表中收入單位:萬元):
表1
銷量 種植量 | 好 | 中 | 差 |
大量 | 8 | -4 | |
適量 | 9 | 7 | 0 |
少量 | 4 | 4 | 2 |
但表格中有一格數(shù)據(jù)被墨跡污損,好在當時調查的數(shù)據(jù)頻數(shù)分布表還在,其中大量種植的100戶農民在市場銷量好的情況下收入情況如表2:
收入(萬元) | 11 | 11.5 | 12 | 12.5 | 13 | 13.5 | 14 | 14.5 | 15 |
頻數(shù)(戶) | 5 | 10 | 15 | 10 | 15 | 20 | 10 | 10 | 5 |
(Ⅰ)根據(jù)題中所給數(shù)據(jù),請估計在市場銷量好的情況下,大量種植的農民每戶的預期收益.(用以往平均收入來估計);
(Ⅱ)若該地區(qū)年銷量在10千噸以下表示銷量差,在10千噸至30千噸之間表示銷量中,在30千噸以上表示銷量好,試根據(jù)頻率分布直方圖計算銷量分別為好、中、差的概率(以頻率代替概率);
(Ⅲ)如果你是這位扶貧書記,請根據(jù)(Ⅰ)(Ⅱ),從農民預期收益的角度分析,你應該選擇哪一種種植量.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知兩定點,,點P是平面內的動點,且,記動點P的軌跡W.
(1)求動點P的軌跡W的方程;
(2)過點作兩條相垂直的直線分別交軌跡于G,H,M,N四點.設四邊形GMHN面積為S,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com