【題目】已知拋物線過點是拋物線上不同兩點,且(其中是坐標原點),直線交于點,線段的中點為.

(Ⅰ)求拋物線的準線方程;

(Ⅱ)求證:直線軸平行.

【答案】(1) .(2)見解析.

【解析】

(Ⅰ)把點代入即可求出p的值,可得拋物線C的準線方程,

(Ⅱ)由題意可設直線AB的方程為yx+m,設Ax1y1),Bx2,y2),由題意可得y1+y22,即可求出點Q的縱坐標,再分別求出直線OABM的方程,求出點P的縱坐標,即可證明.

(Ⅰ)由題意得 ,解得

所以拋物線的準線方程為

(Ⅱ)設,,

,則,所以

所以線段中點的為縱坐標

直線方程為┅①

直線方程為┅②

聯(lián)立①②解得,即點的為縱坐標

如果直線斜率不存在,結論也顯然成立.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C的焦距為2,左頂點與上頂點連線的斜率為

(Ⅰ)求橢圓C的標準方程;

(Ⅱ)過點Pm,0)作圓x2+y21的一條切線l交橢圓CMN兩點,當|MN|的值最大時,求m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四邊形是梯形,四邊形是矩形,且平面平面,,,是線段上的動點.

1)試確定點的位置,使平面,并說明理由;

2)在(1)的條件下,求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),

(Ⅰ)當時,求曲線處的切線方程;

(Ⅱ)求的單調區(qū)間;

(Ⅲ)設,若對于任意,總存在,使得成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}滿足:a1+a2+a3+…+an=n-an,(n=1,2,3,…)

(Ⅰ)求證:數(shù)列{an-1}是等比數(shù)列;

(Ⅱ)令bn=(2-n)(an-1)(n=1,2,3,…),如果對任意n∈N*,都有bn+t≤t2,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知三棱錐的四個頂點在球的球面上,是邊長為正三角形,分別是的中點,,則球的體積為_________________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點是單位正方體的對角面上的一動點,過點作垂直于平面的直線,與正方體的側面相交于兩點,則的面積的最大值為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了打好精準扶貧攻堅戰(zhàn)某村扶貧書記打算帶領該村農民種植新品種蔬菜,可選擇的種植量有三種:大量種植,適量種植,少量種植.根據(jù)收集到的市場信息,得到該地區(qū)該品種蔬菜年銷量頻率分布直方圖如圖,然后,該扶貧書記同時調查了同類其他地區(qū)農民以往在各種情況下的平均收入如表1(表中收入單位:萬元):

1

銷量

種植量

大量

8

-4

適量

9

7

0

少量

4

4

2

但表格中有一格數(shù)據(jù)被墨跡污損,好在當時調查的數(shù)據(jù)頻數(shù)分布表還在,其中大量種植的100戶農民在市場銷量好的情況下收入情況如表2

收入(萬元)

11

11.5

12

12.5

13

13.5

14

14.5

15

頻數(shù)(戶)

5

10

15

10

15

20

10

10

5

(Ⅰ)根據(jù)題中所給數(shù)據(jù),請估計在市場銷量好的情況下,大量種植的農民每戶的預期收益.(用以往平均收入來估計);

(Ⅱ)若該地區(qū)年銷量在10千噸以下表示銷量差,在10千噸至30千噸之間表示銷量中,在30千噸以上表示銷量好,試根據(jù)頻率分布直方圖計算銷量分別為好、中、差的概率(以頻率代替概率);

(Ⅲ)如果你是這位扶貧書記,請根據(jù)(Ⅰ)(Ⅱ),從農民預期收益的角度分析,你應該選擇哪一種種植量.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知兩定點,,點P是平面內的動點,且,記動點P的軌跡W.

1)求動點P的軌跡W的方程;

2)過點作兩條相垂直的直線分別交軌跡于G,H,M,N四點.設四邊形GMHN面積為S,求的取值范圍.

查看答案和解析>>

同步練習冊答案