【題目】下列函數(shù)中,與y= 的奇偶性和單調(diào)性都相同的是(
A.f(x)=x1
B.f(x)=x
C.f(x)=x2
D.f(x)=x3

【答案】D
【解析】解:函數(shù)y= 是奇函數(shù),且在R上是單調(diào)遞增函數(shù),
A、f(x)=x1是奇函數(shù),且在R上不是單調(diào)遞增函數(shù),故A不正確;
B、f(x)= 不是奇函數(shù),故B不正確;
C、f(x)=x2是偶函數(shù),故C不正確;
D、f(x)=x3 , 則x∈R,又f(﹣x)=﹣x3=﹣f(x),所以此函數(shù)是奇函數(shù),y=x3在R上是增函數(shù),故D正確,
故選D.
【考點精析】根據(jù)題目的已知條件,利用函數(shù)單調(diào)性的判斷方法和函數(shù)的奇偶性的相關(guān)知識可以得到問題的答案,需要掌握單調(diào)性的判定法:①設(shè)x1,x2是所研究區(qū)間內(nèi)任兩個自變量,且x1<x2;②判定f(x1)與f(x2)的大;③作差比較或作商比較;偶函數(shù)的圖象關(guān)于y軸對稱;奇函數(shù)的圖象關(guān)于原點對稱.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在定義域內(nèi)既是奇函數(shù)又是減函數(shù)的是(
A.y=
B.y=﹣x+
C.y=﹣x|x|
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中點.
(1)證明CD⊥AE;
(2)證明PD⊥平面ABE;
(3)求二面角A﹣PD﹣C的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某三棱錐的三視圖如圖所示,則該三棱錐的表面積是(
A.2+
B.4+
C.2+2
D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列函數(shù)中與函數(shù)y=x相等的函數(shù)是(
A.y=log22x
B.y=
C.y=2
D.y=( 2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知直二面角α﹣AB﹣β,P∈α,Q∈β,PQ與平面α,β所成的角都為30°,PQ=4,PC⊥AB,C為垂足,QD⊥AB,D為垂足,求:
(1)直線PQ與CD所成角的大小
(2)四面體PCDQ的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=(ex+1)(ax+2a﹣2),若存在x∈(0,+∞),使得不等式f(x)﹣2<0成立,則實數(shù)a的取值范圍是(
A.(0,1)
B.(0,
C.(﹣∞,1)
D.(﹣∞,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,曲線c1:y2=2px(p>0)與曲線c2:(x﹣6)2+y2=36只有三個公共點O,M,N,其中O為坐標(biāo)原點,且 =0.
(1)求曲線c1的方程;
(2)過定點M(3,2)的直線l與曲線c1交于A,B兩點,若點M是線段AB的中點,求線段AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】知函數(shù)f(x)= (a>1),求:
(1)判斷函數(shù)的奇偶性;
(2)證明f(x)是R上的增函數(shù);
(3)求該函數(shù)的值域.

查看答案和解析>>

同步練習(xí)冊答案