(本小題滿分18分)設數(shù)列{}的前項和為,且滿足=2-,(=1,2,3,…)
(Ⅰ)求數(shù)列{}的通項公式;
(Ⅱ)若數(shù)列{}滿足=1,且,求數(shù)列{}的通項公式;
(Ⅲ),求的前項和
(Ⅰ) an=(n∈N*); (Ⅱ) bn=3-2()n-; (Ⅲ) 。
【解析】
試題分析:(Ⅰ)∵n=1時,a1+S1=a1+a1=2
∴a1=1
∵Sn=2-an即an+Sn=2 ∴an+1+Sn+1=2
兩式相減:an+1-an+Sn+1-Sn=0
即an+1-an+an+1=0,故有2an+1=an
∵an≠0 ∴(n∈N*)
所以,數(shù)列{an}為首項a1=1,公比為的等比數(shù)列.an=(n∈N*)
(Ⅱ)∵bn+1=bn+an(n=1,2,3,…)
∴bn+1-bn=()n-1
得b2-b1=1
b3-b2=
b4-b3=()2
……
bn-bn-1=()n-2(n=2,3,…)
將這n-1個等式相加,得
bn-b1=1+
又∵b1=1,∴bn=3-2()n-1(n=1,2,3,…)
(3)
所以
考點:數(shù)列通項公式的求法;數(shù)列前n項和的求法。
點評:若已知遞推公式為的形式求通項公式常用累加法。
注:①若是關于n的一次函數(shù),累加后可轉化為等差數(shù)列求和;
②若是關于n的二次函數(shù),累加后可分組求和;
③是關于n的指數(shù)函數(shù),累加后可轉化為等比數(shù)列求和;
④是關于n的分式函數(shù),累加后可裂項求和。
科目:高中數(shù)學 來源: 題型:
(本小題滿分18分)如圖,將圓分成個扇形區(qū)域,用3種不同顏色給每一個扇形區(qū)域染色,要求相鄰區(qū)域顏色互異,把不同的染色方法種數(shù)記為。求
(Ⅰ);
(Ⅱ)與的關系式;
(Ⅲ)數(shù)列的通項公式,并證明。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(本小題滿分18分)已知數(shù)列{an}、{bn}、{cn}的通項公式滿足bn=an+1-an,cn=bn+1-bn(n∈N*?),若數(shù)列{bn}是一個非零常數(shù)列,則稱數(shù)列{an}是一階等差數(shù)列;若數(shù)列{cn}是一個非零常數(shù)列,則稱數(shù)列{an}是二階等差數(shù)列?(1)試寫出滿足條件a1=1,b1=1,cn=1(n∈N*?)的二階等差數(shù)列{an}的前五項;(2)求滿足條件(1)的二階等差數(shù)列{an}的通項公式an;(3)若數(shù)列{an}首項a1=2,且滿足cn-bn+1+3an=-2n+1(n∈N*?),求數(shù)列{an}的通項公式
查看答案和解析>>
科目:高中數(shù)學 來源:2015屆廣東汕頭達濠中學高一上期末數(shù)學試卷(解析版) 題型:解答題
(本小題滿分18分)知函數(shù)的圖象的一部分如下圖所示。
(1)求函數(shù)的解析式;
(2
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年上海市長寧區(qū)高三教學質量測試理科數(shù)學 題型:解答題
(本小題滿分18分) 本題共有3個小題,第1小題滿分4分,第2小題滿分6分,第3小題滿分8分.
(文)已知數(shù)列中,
(1)求證數(shù)列不是等比數(shù)列,并求該數(shù)列的通項公式;
(2)求數(shù)列的前項和;
(3)設數(shù)列的前項和為,若對任意恒成立,求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年上海市長寧區(qū)高三教學質量測試理科數(shù)學 題型:解答題
本小題滿分18分) 本題共有3個小題,第1小題滿分4分,第2小題滿分6分,第3小題滿分8分.
設函數(shù)是定義域為R的奇函數(shù).
(1)求k值;
(2)(文)當時,試判斷函數(shù)單調性并求不等式f(x2+2x)+f(x-4)>0的解集;
(理)若f(1)<0,試判斷函數(shù)單調性并求使不等式恒成立的的取值范圍;
(3)若f(1)=,且g(x)=a 2x+a - 2x-2m f(x) 在[1,+∞)上的最小值為-2,求m的值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com