【題目】已知函數(shù)).

1時,求函數(shù)的零點;

2的單調(diào)區(qū)間;

3時,若恒成立,求的取值范圍

【答案】1兩個零點,;

2時,的單調(diào)遞增區(qū)間為單調(diào)遞減區(qū)間為,當時,的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為,當時,的單調(diào)遞減區(qū)間為,沒有單調(diào)遞增區(qū)間,當時,的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為;

3

【解析】

試題分析:1,即,即,將代入可求得兩根為;2,對分成,,,四類來討論函數(shù)的單調(diào)區(qū)間3時,當時,時,由2可知函數(shù)在時取得最小值,故,解得

試題解析:

1,即,,

,,

方程有兩個不等實根:,

時,函數(shù)有且只有兩個零點,

2

,,解得

時,列表得:

單調(diào)遞增

極大值

單調(diào)遞減

極小值

單調(diào)遞增

時,

,則,列表得:

單調(diào)遞減

極小值

單調(diào)遞增

極大值

單調(diào)遞減

,易知的單調(diào)減區(qū)間為;

,列表得:

單調(diào)遞減

極小值

單調(diào)遞增

極大值

單調(diào)遞減

綜上,當時,的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為

時,的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為;

時,的單調(diào)遞減區(qū)間為,沒有單調(diào)遞增區(qū)間

時,的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為

3, 時,有,,,,從而

時,由2可知函數(shù)在時取得最小值

為函數(shù)上的最小值

,解得

的取值范圍是

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】下列調(diào)查方式中合適的是(

A.要了解一批節(jié)能燈的使用壽命,采用普查方式

B.調(diào)查你所在班級同學的身高,采用抽樣調(diào)查方式

C.調(diào)查沱江某段水域的水質(zhì)情況,采用抽樣調(diào)查方式

D.調(diào)查全市中學生每天的就寢時間,采用普查方式

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的頂點到左焦點的距離為,離心率.

(1)求橢圓的方程;

(2)若點橢圓的右頂點,過點作互相垂直的兩條射線,與橢分別交于不同的兩點不與左、右頂點重合) 試判斷直線是否過定點,若過定點,求出該定點的坐標;若不過定點,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市四所中學報名參加某高校今年自主招生的學生人數(shù)如下表所示:

中學

人數(shù)

為了了解參加考試的學生的學習狀況,該高校采用分層抽樣的方法從報名參加考試的四所中學的學生當中隨機抽取50名參加問卷調(diào)查.

1)問四所中學各抽取多少名學生?

2)在參加問卷調(diào)查的名學生中,從來自兩所中學的學生當中隨機抽取兩名學生,用表示抽得中學的學生人數(shù),求的分布列,數(shù)學期望和方差.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校從參加某次知識競賽的同學中,選取60名同學將其成績(百分制)(均為整數(shù))分成6組后,得到部分頻率分布直方圖(如圖),觀察圖形中的信息,回答下列問題.

1)求分數(shù)在[70,80)內(nèi)的頻率,并補全這個頻率分布直方圖;

2)從頻率分布直方圖中,估計本次考試的平均分;

3)若從60名學生中隨機抽取2人,抽到的學生成績在[4070)記0分,在[70100]1分,用X表示抽取結(jié)束后的總記分,求X的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線在點處的切線斜率為0.

(1)討論函數(shù)的單調(diào)性;

(2)在區(qū)間上沒有零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為調(diào)查甲、乙兩校高三年級學生某次聯(lián)考數(shù)學成績情況,用簡單隨機抽樣,從這兩校中各抽取30名高三年級學生,以他們的數(shù)學成績百分制作為樣本,樣本數(shù)據(jù)的莖葉圖如圖.

1若甲校高三年級每位學生被抽取的概率為0.05,求甲校高三年級學生總?cè)藬?shù),并估計甲校高三年級這次聯(lián)考數(shù)學成績的及格率60分及60分以上為及格;

2設甲、乙兩校高三年級學生這次聯(lián)考數(shù)學平均成績分別為1,2,估計12的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列命題正確的是

A.若兩條直線和同一個平面所成的角相等,則這兩條直線平行

B.若一個平面內(nèi)有三個點到另一個平面的距離相等,則這兩個平面平行

C. 若一條直線平行于兩個相交平面,則這條直線與這兩個平面的交線平行

D.若兩個平面都垂直于第三個平面,則這個兩個平面平行

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一人連續(xù)投擲硬幣兩次,事件至少有一次為正面的互斥事件是( )

A.至多有一次為正面B.兩次均為正面

C.只有一次為正面D.兩次均為反面

查看答案和解析>>

同步練習冊答案