函數(shù)f(x)=cos2x-cosx+3(-π≤x≤-
π
2
)
有( 。
A、最大值3,最小值2
B、最大值5,最小值3
C、最大值5,最小值2
D、最大值3,最小值
15
8
分析:利用二倍角公式可先把函數(shù)化簡得,f(x)=2cos2x-cosx+2,(-1≤cosx≤0),根據(jù)二次函數(shù)的最值求解即可
解答:解:f(x)=cos2x-cosx+3=2cos2x-cosx+2
=2(cosx-
1
4
)
2
+
15
8

-π≤ x ≤-
π
2
∴-1≤cosx≤0
當(dāng)cosx=-1時(shí)函數(shù)有最大值5,當(dāng)cosx=0時(shí),函數(shù)有最小值2
故選C
點(diǎn)評:本題主要考查了利用二倍角公式把三角函數(shù)轉(zhuǎn)化為二次函數(shù)在閉區(qū)間上最值的求解問題,解題的關(guān)鍵是要熟練掌握并靈活運(yùn)用公式,熟練二次函數(shù)的最值求解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=cos(2x-
π3
)+sin2x-cos2x

(Ⅰ)求函數(shù)f(x)的最小正周期及圖象的對稱軸方程;
(Ⅱ)設(shè)函數(shù)g(x)=[f(x)]2+f(x),求g(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=cos(2x+
π
2
)
是( 。
A、最小正周期為π的偶函數(shù)
B、最小正周期為
π
2
的偶函數(shù)
C、最小正周期為π的奇函數(shù)
D、最小正周期為
π
2
的奇函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法中:
①函數(shù)f(x)=
1
lgx
在(0,+∞)
是減函數(shù);
②在平面上,到定點(diǎn)(2,-1)的距離與到定直線3x-4y-10=0距離相等的點(diǎn)的軌跡是拋物線;
③設(shè)函數(shù)f(x)=cos(
3
x+
π
6
)
,則f(x)+f'(x)是奇函數(shù);
④雙曲線
x2
25
-
y2
16
=1
的一個(gè)焦點(diǎn)到漸近線的距離是5;
其中正確命題的序號(hào)是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2006•石景山區(qū)一模)已知函數(shù)f(x)=cos(π-x)sin(
π
2
+x)+
3
sinxcosx

(Ⅰ)求f(x)的最小正周期;
(Ⅱ)求當(dāng)x∈[0,
π
2
]
時(shí),f(x)的最大值及最小值;
(Ⅲ)求f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=cos(2x+
π
3
)+sin2x
,
(1)化簡f(x);
(2)若不等式f(x)-m<2在x∈[
π
4
,
π
2
]
上恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)A,B,C為△ABC的三個(gè)內(nèi)角,若cosB=
1
3
,f(
C
2
)=-
1
4
,求sinA.

查看答案和解析>>

同步練習(xí)冊答案