設(shè)變量x,y滿足約束條件
3x-y-6≤0
x-y+2≥0
x≥0,y≥0
,若目標(biāo)z=mx+ny(m>0,n>0)的最大值為18,則2m+3n的值為(  )
A、6B、7C、8D、9
考點(diǎn):簡(jiǎn)單線性規(guī)劃
專(zhuān)題:不等式的解法及應(yīng)用
分析:作出不等式組對(duì)應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)取得最大值,確定m,n的關(guān)系,即可得到結(jié)論.
解答: 解:作出不等式組對(duì)應(yīng)的平面區(qū)域如圖:(陰影部分),
由z=mx+ny(m>0,n>0),則y=-
m
n
x+
z
n
,
平移直線y=-
m
n
x+
z
n
,由圖象可知當(dāng)直線y=-
m
n
x+
z
n
經(jīng)過(guò)點(diǎn)A是,直線的截距最大,此時(shí)z最大為18.
3x-y-6=0
x-y+2=0
,解得
x=4
y=6
.即A(4,6),
代入目標(biāo)函數(shù)18=4m+6n,得2m+3n=9.
故選:D.
點(diǎn)評(píng):本題主要考查線性規(guī)劃的應(yīng)用,利用數(shù)形結(jié)合是解決此類(lèi)問(wèn)題的基本方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)全集U=R,集合A={x|
x+1
x-2
≥0},B={x|1<2x<8},則A∩B等于(  )
A、[-1,3)
B、(0,2]
C、(1,2]
D、(2,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

命題p:|x-1|≤2,命題q:
x-2
3-x
>0,則p是q成立的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=x2-2x,若f(x+1)+f(y+1)≤f(x)+f(y)≤0,則點(diǎn)P(x,y)所形成的區(qū)域的面積為( 。
A、
3
+
3
2
B、
3
-
3
2
C、
3
+
3
2
D、
3
-
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)命題p:函數(shù)y=
1
x
在定義域上為減函數(shù);命題q:a,b是任意實(shí)數(shù),若a>b>-1,則
1
a+1
1
b+1
,則( 。
A、“p或q”為假
B、“p且q”為真
C、p假q真
D、p真q假

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知an=4n-2,n∈N*如果執(zhí)行如圖所示程序框圖,那么輸出的S為( 。
A、12B、14C、72D、98

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)集合A={x|x(x-2)≤0},B={x|log2(x-1)≤0},則A∩B=( 。
A、[1,2]
B、(0,2]
C、(1,2]
D、(1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知非負(fù)實(shí)數(shù)x、y、z滿足x+y+z=3.
(1)求
2x+1
+
2y+1
+
2z+1
的最大值;
(2)求證:
x2
1+x4
+
y2
1+y4
+
z2
1+z4
1
1+x
+
1
1+y
+
1
1+z

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)若
1
4
t2
-kt-1≤0在t∈[-1,1]上恒成立,求實(shí)數(shù)k的取值范圍,
(2)若
1
4
t2
-kt-1≤0在k∈[-1,1]上恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案