【題目】給出下列四種說法: ①函數(shù)y=ax(a>0且a≠1)與函數(shù)y=logaax(a>0且a≠1)的定義域相同;
②函數(shù)y=x3與y=3x的值域相同;
③函數(shù)y= + 與y= 都是奇函數(shù);
④函數(shù)y=(x﹣1)2與y=2x﹣1在區(qū)間[0,+∞)上都是增函數(shù).
其中正確的序號是(把你認為正確敘述的序號都填上).
【答案】①③
【解析】解:①中兩函數(shù)的定義域均為R,故①正確; ②中函數(shù)y=x3的值域為R,y=3x的值域(0,+∞),故②錯誤;
③中 ,所以f(﹣x)=﹣f(﹣x),為奇函數(shù),
而 ,y= 是奇函數(shù),y=2x+2﹣x+2是偶函數(shù),所以y= 是奇函數(shù),故③正確;
④函數(shù)y=(x﹣1)2在[1,+∞)上單增,故④錯誤.
故答案為:①③
①中兩函數(shù)的定義域均為x>0;
②中函數(shù)y=x3的值域為R,y=3x的值域(0,+∞);
③中兩個函數(shù)都可以先進行化簡,在利用奇偶性的定義看f(﹣x)和f(x)的關(guān)系即可;
④中易判斷函數(shù)y=(x﹣1)2的單調(diào)增區(qū)間是[1,+∞).
科目:高中數(shù)學 來源: 題型:
【題目】某社區(qū)為豐富居民節(jié)日活動,組織了“迎新春”象棋大賽,已知報名的選手情況統(tǒng)計如下表:
組別 | 男 | 女 | 總計 |
中年組 | 91 | ||
老年組 | 16 |
已知中年組女性選手人數(shù)是僅比老年組女性選手人數(shù)多2人.若對中年組和老年組分別利用分層抽樣的方法抽取部分報名者參加比賽,已知老年組抽取了5人,其中女性3人,中年組抽取了7人.
(Ⅰ)求表格中的數(shù)據(jù);
(Ⅱ)若從選出的中年組的選手中隨機抽取兩名進行比賽,求至少有一名女性選手的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一企業(yè)從某條生產(chǎn)線上隨機抽取30件產(chǎn)品,測量這些產(chǎn)品的某項技術(shù)指標值,得到如下的頻數(shù)分布表:
頻數(shù) | 2 | 6 | 18 | 4 |
(I)估計該技術(shù)指標值的平均數(shù)和眾數(shù)(以各組區(qū)間的中點值代表該組的取值);
(II) 若或,則該產(chǎn)品不合格,其余的是合格產(chǎn)品,從不合格的產(chǎn)品中隨機抽取2件,求抽取的2件產(chǎn)品中技術(shù)指標值小于的產(chǎn)品恰有1件的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知以為圓心的圓:及其上一點.
(1)設(shè)圓與軸相切,與圓外切,且圓心在直線上,求圓的標準方程;
(2)設(shè)平行于的直線與圓相交于,兩點,且,求直線的方程;
(3)設(shè)點滿足:存在圓上的兩點和,使得,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】己知函數(shù)f(x)=loga(3x+1),g(x)=loga(1﹣3x),(a>0且a≠1).
(1)求函數(shù)F(x)=f(x)﹣g(x)的定義域;
(2)判斷F(x)=f(x)﹣g(x)的奇偶性,并說明理由4;
(3)確定x為何值時,有f(x)﹣g(x)>0.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2016年入冬以來,各地霧霾天氣頻發(fā), 頻頻爆表(是指直徑小于或等于2.5微米的顆粒物),各地對機動車更是出臺了各類限行措施,為分析研究車流量與的濃度是否相關(guān),某市現(xiàn)采集周一到周五某一時間段車流量與的數(shù)據(jù)如下表:
時間 | 周一 | 周二 | 周三 | 周四 | 周五 |
車流量(萬輛) | 50 | 51 | 54 | 57 | 58 |
的濃度(微克/立方米) | 69 | 70 | 74 | 78 | 79 |
(1)請根據(jù)上述數(shù)據(jù),在下面給出的坐標系中畫出散點圖;
(2)試判斷與是否具有線性關(guān)系,若有請求出關(guān)于的線性回歸方程,若沒有,請說明理由;
(3)若周六同一時間段的車流量為60萬輛,試根據(jù)(2)得出的結(jié)論,預報該時間段的的濃度(保留整數(shù)).
參考公式: , .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知奇函數(shù)
(1)在直角坐標系中畫出y=f(x)的圖象,并指出函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)在區(qū)間[﹣1,a﹣2]上單調(diào)遞增,試確定a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的長半軸為,短半軸為.橢圓的兩個焦點分別為,,離心率為方程的一根,長半軸為,短半軸為.若,.
(Ⅰ)求橢圓的方程;
(Ⅱ)如圖,過橢圓上且位于軸左側(cè)的一點作圓的兩條切線,分別交軸于點、.試推斷是否存在點,使?若存在,求出點的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com