設(shè)函數(shù),曲線在點(diǎn)處的切線為.
(1)求;
(2)證明:.

(1) ;(2)詳見解析.

解析試題分析:(1)求的值就一定要建立關(guān)于的兩個(gè)方程,通過解方程求出值,這就是方程思想,這里通過斜率關(guān)系確立一個(gè)方程,還有一個(gè)方程就是要用切點(diǎn)既在直線上,又在曲線上來確立,即用好切點(diǎn)的雙重身份;(2)通過重新構(gòu)造函數(shù),利用導(dǎo)數(shù)知識(shí)來研究函數(shù)的極值和最值,進(jìn)而達(dá)到證明不等式的目的,此題如果想直接去研究的最小值,通過最小值比大,來達(dá)到證題的目的,那是很難辦到的,所以說構(gòu)造函數(shù)是需要功底的,也是需要技巧的.
試題解析:(1) 函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/8d/d/pqdqb2.png" style="vertical-align:middle;" />,,根據(jù)切點(diǎn)既在直線上,又在曲線上,依題意可得,,故         4分
(2)由(1)知, ,從而等價(jià)于.
設(shè)函數(shù),則,所以當(dāng)時(shí),,當(dāng)時(shí),,故單調(diào)遞減,在 單調(diào)遞增,從而上的最小值為  10分
設(shè)函數(shù),則,所以當(dāng)時(shí),,當(dāng)時(shí),,故單調(diào)遞增,在單調(diào)遞減,從而上的最大值為.又上取得最值的條件不同,所以綜上:當(dāng)時(shí),,即.    14分
考點(diǎn):1.導(dǎo)數(shù)及其應(yīng)用;2.函數(shù)的綜合應(yīng)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)。
(Ⅰ)若曲線在公共點(diǎn)處有相同的切線,求實(shí)數(shù)的值;
(Ⅱ)若,求方程在區(qū)間內(nèi)實(shí)根的個(gè)數(shù)(為自然對數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)為常數(shù).
(1)若,求函數(shù)上的值域;(為自然對數(shù)的底數(shù),
(2)若函數(shù)上為單調(diào)減函數(shù),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)).
(1)求的單調(diào)區(qū)間;(4分)
(2)求所有實(shí)數(shù),使恒成立.(8分)
(注:為自然對數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知.
(1)求函數(shù)在區(qū)間上的最小值;
(2)對一切實(shí)數(shù),恒成立,求實(shí)數(shù)的取值范圍;
(3) 證明對一切, 恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù) (R).
(1)當(dāng)時(shí),求函數(shù)的極值;
(2)若函數(shù)的圖象與軸有且只有一個(gè)交點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),).
(1)若x=3是的極值點(diǎn),求[1,a]上的最小值和最大值;
(2)若時(shí)是增函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)f(x)=x2+2x+kln x,其中k≠0.
(1)當(dāng)k>0時(shí),判斷f(x)在(0,+∞)上的單調(diào)性;
(2)討論f(x)的極值點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

函數(shù)的減區(qū)間是    

查看答案和解析>>

同步練習(xí)冊答案