(本小題滿分13分)
在數(shù)列{an}中,a1=1,an=n2[1+++…+] (n≥2,n∈N)
(1)當(dāng)n≥2時(shí),求證:=
(2)求證:(1+)(1+)…(1+)<4
(1)利用
得到
(2)當(dāng)時(shí),

 
驗(yàn)證,當(dāng)時(shí), ,綜上所述,對(duì)任意,不等式都成立.

試題分析:(1)當(dāng)時(shí), ……………………1分
所以…………………4分
 …………………………………………………………5分
(2)當(dāng)時(shí),……6分
……8分
……10分
 ………………………11分
當(dāng)時(shí), ……………………………………………………………12分
綜上所述,對(duì)任意,不等式都成立.……………………………………13分
點(diǎn)評(píng):中檔題,涉及數(shù)列的不等式證明問題,往往需要先求和、再證明。本題(2)利用“裂項(xiàng)相消法”求得“數(shù)列的和”,利用放縮法,達(dá)到證明目的。易錯(cuò)忽視n=1的驗(yàn)證。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在等差數(shù)列中,已知,則該數(shù)列前11項(xiàng)和(   )
A.58B.88C.143D.176

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在等差數(shù)列中,若,則的和等于 (    )
A.7B.8C.9D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)數(shù)列滿足:。
(1)求證:;
(2)若,對(duì)任意的正整數(shù)恒成立,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

無(wú)窮等差數(shù)列{an}各項(xiàng)都是正數(shù),Sn是它的前n項(xiàng)和,若a1+a3+a8=a42,則a5·S4的最大值是______________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知 是等差數(shù)列,是公比為的等比數(shù)列,,記為數(shù)列的前項(xiàng)和,
(1)若是大于的正整數(shù),求證:;
(2)若是某一正整數(shù),求證:是整數(shù),且數(shù)列中每一項(xiàng)都是數(shù)列中的項(xiàng);
(3)是否存在這樣的正數(shù),使等比數(shù)列中有三項(xiàng)成等差數(shù)列?若存在,寫出一個(gè)的值,并加以說明;若不存在,請(qǐng)說明理由;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)
已知數(shù)列的前n項(xiàng)和為,滿足
(1)求數(shù)列的通項(xiàng)公式
(2)設(shè),求數(shù)列的前n項(xiàng)和。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知為等差數(shù)列,,,則(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若數(shù)列、的通項(xiàng)公式分別是,,且,對(duì)任意恒成立,則常數(shù)的取值范圍是(     )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案