方程sinx=-cos80°的解集是( 。
A、{X|X=k•180°+10°,k∈z}
B、{x|x=k•360°+10°,k∈z}
C、{x|x=k•180°±10°,k∈z}
D、{x|x=k•180°-(-1)k•10°,k∈z}
考點:運用誘導(dǎo)公式化簡求值
專題:計算題,三角函數(shù)的求值
分析:利用誘導(dǎo)公式知,sinx=-cos80°=sin(80°+90°)=sin170°=sin10°,從而可得答案.
解答: 解:∵sinx=-cos80°=sin(80°+90°)=sin170°=sin10°,
∴x=k•360°+170°=(2k+1)•180°-10°或x=k•360°+10°=2k•180°+10°,
∴x=k•180°-(-1)k•10°,k∈z,
∴方程sinx=-cos80°的解集為{x|x=k•180°-(-1)k•10°,k∈z}.
故選:D.
點評:本題考查運用誘導(dǎo)公式化簡求值,考查綜合分析與運算能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

直線x-y+2=0與曲線(x-1)(x-2)+(y-3)(y-4)=0的交點個數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線
3
x+y+m=0的傾斜角是(  )
A、
π
2
B、
π
6
C、
3
D、
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,sinA:sinB:sinC=4:3:2,那么cosB的值為(  )
A、
11
16
B、-
1
4
C、
7
8
D、
1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a,b,c分別為角A,B,C所對的邊,滿足c=2bsinC,a2=b2+c2-
3
bc
,則角C為( 。
A、
π
6
B、
π
3
C、
π
2
D、
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x,g(x)為偶函數(shù),且當(dāng)x≥0時,g(x)=x2-2x.記max{a,b}=
a,a≥b
b,a<b
.給出下列關(guān)于函數(shù)F(x)=max{f(x),g(x)}(x∈R)的說法:
①當(dāng)x≥3時,F(xiàn)(x)=x2-2x;
②函數(shù)F(x)為奇函數(shù);
③函數(shù)F(x)在[-1,1]上為增函數(shù);
④函數(shù)F(x)的最小值為-1,無最大值.  
其中正確的是( 。
A、①②④B、①③④
C、①③D、②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,a1=2,a2=
5
2
,an+2+an=2an+1,n∈N*,則a101的值為( 。
A、49B、50C、51D、52

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a+b=2
3
,ab=2,且角C的度數(shù)為120°
(1)求△ABC的面積;
(2)求邊c的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為了調(diào)查某大學(xué)學(xué)生在周日上網(wǎng)的時間,隨機對100名男生和100名女生進行了不記名的問卷調(diào)查,
得到了如下的統(tǒng)計結(jié)果:
表1:男生上網(wǎng)時間與頻數(shù)分布表
上網(wǎng)時間(分鐘) [30,40) [40,50) [50,60) [60,70) [70,80]
人數(shù) 5 25 30 25 15
表2:女生上網(wǎng)時間與頻數(shù)分布表
上網(wǎng)時間(分鐘) [30,40) [40,50) [50,60) [60,70) [70,80)
人數(shù) 10 20 40 20 10
(Ⅰ)若該大學(xué)共有女生750人,試估計其中上網(wǎng)時間不少于60分鐘的人數(shù);
(Ⅱ)完成表3的2×2列聯(lián)表,并回答能否有90%的把握認為“學(xué)生周日上網(wǎng)時間與性別有關(guān)”?
(Ⅲ)從表3的男生中“上網(wǎng)時間少于60分鐘”和“上網(wǎng)時間不少于60分鐘”的人數(shù)中用分層抽樣的方法抽取一個容量為5的樣本,再從中任取兩人,求至少有一人上網(wǎng)時間超過60分鐘的概率.
表3:
上網(wǎng)時間少于60分鐘 上網(wǎng)時間不少于60分鐘 合計
男生
女生
合計
附:k2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d
P(K2≥k0 0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k0 0.455 0.708 1.323 2.072 2.706 3.84 5.024 6.635 7.879 10.83

查看答案和解析>>

同步練習(xí)冊答案