【題目】如圖所示,為山腳兩側(cè)共線的3點(diǎn),在山頂處測得3點(diǎn)的俯角分別為,計劃沿直線開通穿山隧道,為求出隧道的長度,你認(rèn)為還需要直接測量出中哪些線段的長度?根據(jù)條件,并把你認(rèn)為需要測量的線段長度作為已知量,寫出計算隧道長度的運(yùn)算步驟.

【答案】見解析

【解析】

1)直接測量的長度;

(2)在中,用正弦定理求出長,在中,用正弦定理求出長,即可求出;或在中,用正弦定理求出長,在中,用正弦定理求出長,也可求解.

解:(方法一)(1)直接測量線段的長度.

2)計算線段的長.

中,.

由正弦定理得,

.

3)計算線段的長.

中,,

由正弦定理得,

.

4)計算線段的長.

.

(方法二)(1)直接測量線段的長度.

2)計算線段的長.

中,,

由正弦定理得

3)計算線段AB的長.

中,

由正弦定理得,

.

4)計算線段的長,

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=logax+a)(a0a≠1)的圖象過點(diǎn)(﹣1,0),gx)=fx+f(﹣x).

(Ⅰ)求函數(shù)gx)的定義域;

(Ⅱ)寫出函數(shù)gx)的單調(diào)區(qū)間,并求gx)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為了分析在一次數(shù)學(xué)競賽中甲、乙兩個班的數(shù)學(xué)成績,分別從甲、乙兩個班中隨機(jī)抽取了10個學(xué)生的成績,成績的莖葉圖如下:

)根據(jù)莖葉圖,計算甲班被抽取學(xué)生成績的平均值及方差;

)若規(guī)定成績不低于90分的等級為優(yōu)秀,現(xiàn)從甲、乙兩個班級所抽取成績等級為優(yōu)秀的學(xué)生中,隨機(jī)抽取2人,求這兩個人恰好都來自甲班的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),常數(shù).

1)當(dāng)時,解不等式;

2)當(dāng)時,判斷并用定義法證明函數(shù)在的單調(diào)性;

3)討論函數(shù)的奇偶性,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某有機(jī)水果種植基地試驗(yàn)種植的某水果在售賣前要成箱包裝,每箱80個,每一箱水果在交付顧客之前要按約定標(biāo)準(zhǔn)對水果作檢測,如檢測出不合格品,則更換為合格品.檢測時,先從這一箱水果中任取10個作檢測,再根據(jù)檢測結(jié)果決定是否對余下的所有水果作檢測.設(shè)每個水果為不合格品的概率都為,且各個水果是否為不合格品相互獨(dú)立.

(Ⅰ)記10個水果中恰有2個不合格品的概率為,求取最大值時p的值;

(Ⅱ)現(xiàn)對一箱水果檢驗(yàn)了10個,結(jié)果恰有2個不合格,以(Ⅰ)中確定的作為p的值.已知每個水果的檢測費(fèi)用為1.5元,若有不合格水果進(jìn)入顧客手中,則種植基地要對每個不合格水果支付a元的賠償費(fèi)用

(ⅰ)若不對該箱余下的水果作檢驗(yàn),這一箱水果的檢驗(yàn)費(fèi)用與賠償費(fèi)用的和記為X,求EX;

(ⅱ)以檢驗(yàn)費(fèi)用與賠償費(fèi)用和的期望值為決策依據(jù),當(dāng)種植基地要對每個不合格水果支付的賠償費(fèi)用至少為多少元時,將促使種植基地對這箱余下的所有水果作檢驗(yàn)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,內(nèi)角A,B,C所對的邊分別是a,b,c,已知A,b2a2c2.

(1)tanC的值;

(2)若△ABC的面積為3,求b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知一定點(diǎn),及一定直線,以動點(diǎn)為圓心的圓過點(diǎn),且與直線相切

(Ⅰ)求動點(diǎn)的軌跡的方程;

(Ⅱ)設(shè)在直線上,直線,分別與曲線相切于,,為線段的中點(diǎn)求證:,且直線恒過定點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)據(jù),,,,的平均值為2,方差為1,則數(shù)據(jù),,相對于原數(shù)據(jù)( )

A.一樣穩(wěn)定B.變得比較穩(wěn)定C.變得比較不穩(wěn)定D.穩(wěn)定性不可以判斷

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的定義域?yàn)?/span>;

1)求實(shí)數(shù)的取值范圍;

2)設(shè)實(shí)數(shù)的最大值,若實(shí)數(shù),,滿足,求的最小值.

查看答案和解析>>

同步練習(xí)冊答案