對(duì)于函數(shù)①f(x)=|x+2|,②f(x)=|x-2|,③f(x)=cos(x-2),判斷如下兩個(gè)命題的真假:命題甲:f(x+2)是偶函數(shù);命題乙:f(x)在(-∞,2)上是減函數(shù),在(2,+∞)上是增函數(shù);能使命題甲、乙均為真的所有函數(shù)的序號(hào)是 .
【答案】分析:對(duì)于題中所給的3個(gè)函數(shù),它們的定義域均為實(shí)數(shù)集R;于是可以先求出函數(shù)f(x+2)的解析式,①中有f(x+2)=|x+4|,②中有f(x+2)=|x|,③中有f(x+2)=cosx,然后判斷f(x+2)的奇偶性;再由函數(shù)f(x)的圖象可得出f(x)的單調(diào)性來(lái).
解答:解:①函數(shù)f(x)=|x+2|,則有f(x+2)=|x+4|,顯然這不是偶函數(shù),因此①中的函數(shù)不符合要求;
②函數(shù)f(x)=|x-2|,則有f(x+2)=|x|,f(x+2)是偶函數(shù),又由函數(shù)f(x)的圖象可知f(x)在(-∞,2)上是減函數(shù),在(2,+∞)上是增函數(shù),所以②符合要求;
③中函數(shù)f(x)=cos(x-2),則有f(x+2)=cosx,是偶函數(shù),但是它在(-∞,2)上沒(méi)有單調(diào)性;因此答案應(yīng)為②.
故答案為②.
點(diǎn)評(píng):本題考查了函數(shù)的奇偶性,單調(diào)性及其判斷與證明;復(fù)合函數(shù)的概念,命題的概念.