【題目】已知函數(shù)f(x)=x2﹣x﹣ (x<0),g(x)=x2+bx﹣2(x>0),b∈R,若f(x)圖象上存在A,B兩個不同的點與g(x)圖象上A′,B′兩點關(guān)于y軸對稱,則b的取值范圍為(
A.(﹣4 ﹣5,+∞)
B.(4 ﹣5,+∞)
C.(﹣4 ﹣5,1)
D.(4 ﹣5,1)

【答案】D
【解析】解:由題意知,方程f(﹣x)=g(x)在(0,+∞)上有兩個不同的解,
即x2+x﹣ =x2+bx﹣2,
則b= +1﹣
則b<1,
又b= ,
設(shè)h(x)= ,
則h′(x)= =
由h′(x)=0得x2﹣2x﹣1=0得x=1+ 或1﹣ (舍),
當0<x<1+ 時,h′(x)<0,函數(shù)h(x)遞減,
當x>1+ 時,h′(x)>0,函數(shù)h(x)遞增,
則當x=1+ 時,h(x)取得極小值,
此時h(1+ )= +1﹣ =2( ﹣1)+1﹣ =2 ﹣2+1﹣ =2 ﹣2+1﹣2(2﹣ )=4 ﹣5,
∴要使則b= +1﹣ 在(0,+∞)上有兩個不同的交點,
則4 ﹣5<b<1,
即a的取值范圍是(4 ﹣5,1)
故選:D.

【考點精析】本題主要考查了函數(shù)的極值與導數(shù)的相關(guān)知識點,需要掌握求函數(shù)的極值的方法是:(1)如果在附近的左側(cè),右側(cè),那么是極大值(2)如果在附近的左側(cè),右側(cè),那么是極小值才能正確解答此題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】2015男籃亞錦賽決賽階段,中國男籃以連勝的不敗成績贏得第屆亞錦賽冠軍,同時拿到亞洲唯一張直通里約奧運會的入場券.賽后,中國男籃主力易建聯(lián)榮膺本屆亞錦賽(最有價值球員),下表是易建聯(lián)在這場比賽中投籃的統(tǒng)計數(shù)據(jù).

比分

易建聯(lián)技術(shù)統(tǒng)計

投籃命中

罰球命中

全場得分

真實得分率

中國新加坡

中國韓國

中國約旦

中國哈薩克斯坦

中國黎巴嫩

中國卡塔爾

中國印度

中國伊朗

中國菲律賓

注:(1)表中表示出手次命中次;

(2)(真實得分率)是衡量球員進攻的效率,其計算公式為:

(1)從上述場比賽中隨機選擇一場,求易建聯(lián)在該場比賽中超過的概率;

(2)我們把比分分差不超過分的比賽稱為“膠著比賽”.為了考驗求易建聯(lián)在“膠著比賽”中的發(fā)揮情況,從“膠著比賽”中隨機選擇兩場,求易建聯(lián)在這兩場比賽中至少有一場超過的概率;

(3)用來表示易建聯(lián)某場的得分,用來表示中國隊該場的總分,畫出散點圖如圖所示,請根據(jù)散點圖判斷之間是否具有線性相關(guān)關(guān)系?結(jié)合實際簡單說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= + ,則下列命題中正確命題的序號是
①f(x)是偶函數(shù);
②f(x)的值域是[ ,2];
③當x∈[0, ]時,f(x)單調(diào)遞增;
④當且僅當x=2kπ± (k∈Z)時,f(x)=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐P﹣ABCD,側(cè)面PAD是邊長為2的正三角形,且與底面垂直,底面ABCD是∠ABC=60°的菱形,M為PC的中點.
(Ⅰ) 求證:PC⊥AD;
(Ⅱ) 在棱PB上是否存在一點Q,使得A,Q,M,D四點共面?若存在,指出點Q的位置并證明;若不存在,請說明理由;
(Ⅲ) 求點D到平面PAM的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,網(wǎng)格紙上小正方形的邊長為1,粗線畫出的是某個四面體的三視圖,則該四面體的表面積為(

A.8+8 +4
B.8+8 +2
C.2+2 +
D. + +

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知圓O的直徑AB長度為4,點D為線段AB上一點,且 ,點C為圓O上一點,且 .點P在圓O所在平面上的正投影為點D,PD=BD.

(1)求證:CD⊥平面PAB;
(2)求點D到平面PBC的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)求曲線在點處的切線方程;

(2)求函數(shù)的單調(diào)區(qū)間及極值;

(3)對, 成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在平面直角坐標系中,直線經(jīng)過點,傾斜角為.在以原點為極點, 軸正半軸為極軸的極坐標系中,曲線的方程為.

(1)寫出直線的參數(shù)方程和曲線的直角坐標方程;

(2)設(shè)直線與曲線相交于兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐的底面是正方形,每條側(cè)棱的長都是底面邊長的倍,為側(cè)棱上的點.

1)求證:

2)若平面,求二面角的大小.

3)在(2)的條件下,側(cè)棱SC上是否存在一點E,使得BE∥平面PAC?若存在,求SE∶EC的值;若不存在,試說明理由.

查看答案和解析>>

同步練習冊答案