【題目】設(shè),,分別為內(nèi)角,,的對邊.已知,,且,則( )
A. 1B. 2C. D.
【答案】D
【解析】
由正弦定理,兩角和的正弦函數(shù)公式,三角形內(nèi)角和定理,誘導(dǎo)公式,同角三角函數(shù)基本關(guān)系式化簡已知可得cosA的值,進(jìn)而根據(jù)余弦定理可求a的值.
∵asinA=2bcosAcosC+2ccosAcosB,
∴由正弦定理可得:sin2A=2sinBcosAcosC+2sinCcosAcosB,
可得sin2A=2cosA(sinBcosC+sinCcosB)=2cosAsin(B+C)=2cosAsinA,
∵A∈(0,π),sinA≠0,
∴sinA=2cosA,即tanA=2,cosA,
∵b,c=2,
∴由余弦定理可得a.
故選:D.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐A-BCDE中,平面BCDE,底面BCDE為直角梯形,、,,F為AC上一點,且.
(1)求證:平面ADE;
(2)求異面直線AB、DE所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱中,,E,F分別為線段 的中點.
(1)求證:面;
(2)求證:面;
(3)在線段上是否存在一點G,使平面平面,證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校高三年級有學(xué)生500人,其中男生300人,女生200人,為了研究學(xué)生的數(shù)學(xué)成績是否與性別有關(guān),現(xiàn)采用分層抽樣的方法,從中抽取了100名學(xué)生,先統(tǒng)計了他們期中考試的數(shù)學(xué)分?jǐn)?shù),然后按性別分為男、女兩組,再將兩組學(xué)生的分?jǐn)?shù)分成5組:[100,110),[110,120),[120,130),[130,140),[140,150]分別加以統(tǒng)計,得到如圖所示的頻率分布直方圖.
(1)從樣本中分?jǐn)?shù)小于110分的學(xué)生中隨機抽取2人,求兩人恰好為一男一女的概率;
(2)若規(guī)定分?jǐn)?shù)不小于130分的學(xué)生為“數(shù)學(xué)尖子生”,請你根據(jù)已知條件完成2×2列聯(lián)表,并判斷是否有90%的把握認(rèn)為“數(shù)學(xué)尖子生與性別有關(guān)”?
附:
P(K2≥k0) | 0.100 | 0.050 | 0.010 | 0.001 |
k0 | 2.706 | 3.841 | 6.635 | 10.828 |
,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知函數(shù)在處的切線方程為,函數(shù).
(1)求函數(shù)的解析式;
(2)求函數(shù)的極值;
(3)設(shè)(表示,中的最小值),若在上恰有三個零點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在中老年人群體中,腸胃病是一種高發(fā)性疾病某醫(yī)學(xué)小組為了解腸胃病與運動之間的聯(lián)系,調(diào)查了50位中老年人每周運動的總時長(單位:小時),將數(shù)據(jù)分成[0,4),[4,8),[8,14),[14,16),[16,20),[20,24]6組進(jìn)行統(tǒng)計,并繪制出如圖所示的柱形圖.
圖中縱軸的數(shù)字表示對應(yīng)區(qū)間的人數(shù)現(xiàn)規(guī)定:每周運動的總時長少于14小時為運動較少.
每周運動的總時長不少于14小時為運動較多.
(1)根據(jù)題意,完成下面的2×2列聯(lián)表:
有腸胃病 | 無腸胃病 | 總計 | |
運動較多 | |||
運動較少 | |||
總計 |
(2)能否有99.9%的把握認(rèn)為中老年人是否有腸胃病與運動有關(guān)?
附:K2(n=a+b+c+d)
P(K2≥k) | 0.0.50 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】三國時代吳國數(shù)學(xué)家趙爽所注《周髀算經(jīng)》中給出了勾股定理的絕妙證明.下面是趙爽的弦圖及注文,弦圖是一個以勾股形之弦為邊的正方形,其面積稱為弦實.圖中包含四個全等的勾股形及一個小正方形,分別涂成紅(朱)色及黃色,其面積稱為朱實、黃實,利用,化簡,得.設(shè)勾股形中勾股比為,若向弦圖內(nèi)隨機拋擲顆圖釘(大小忽略不計),則落在黃色圖形內(nèi)的圖釘數(shù)大約為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知離心率為的橢圓,與直線交于兩點,記直線的斜率為,直線的斜率為.
(1)求橢圓方程;
(2)若,則三角形的面積是否為定值?若是,求出這個定值;若不是,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com