【題目】某大型公司為了切實(shí)保障員工的健康安全,貫徹好衛(wèi)生防疫工作的相關(guān)要求,決定在全公司范圍內(nèi)舉行一次乙肝普查.為此需要抽驗(yàn)669人的血樣進(jìn)行化驗(yàn),由于人數(shù)較多,檢疫部門制定了下列兩種可供選擇的方案.
方案一:將每個(gè)人的血分別化驗(yàn),這時(shí)需要驗(yàn)669次.
方案二:按個(gè)人一組進(jìn)行隨機(jī)分組,把從每組個(gè)人抽來的血混合在一起進(jìn)行檢驗(yàn),如果每個(gè)人的血均為陰性,則驗(yàn)出的結(jié)果呈陰性,這個(gè)人的血就只需檢驗(yàn)一次(這時(shí)認(rèn)為每個(gè)人的血化驗(yàn)次);否則,若呈陽性,則需對(duì)這個(gè)人的血樣再分別進(jìn)行一次化驗(yàn),這時(shí)該組個(gè)人的血總共需要化驗(yàn)次.
假設(shè)此次普查中每個(gè)人的血樣化驗(yàn)呈陽性的概率為,且這些人之間的試驗(yàn)反應(yīng)相互獨(dú)立.
(1)設(shè)方案二中,某組個(gè)人中每個(gè)人的血化驗(yàn)次數(shù)為,求的分布列.
(2)設(shè),試比較方案二中,分別取2,3,4時(shí),各需化驗(yàn)的平均總次數(shù);并指出在這三種分組情況下,相比方案一,化驗(yàn)次數(shù)最多可以平均減少多少次?(最后結(jié)果四舍五入保留整數(shù))
【答案】(1)分布列見解析;(2),462次;,404次;,397次;272次
【解析】
(1)由題得,,分別求出對(duì)應(yīng)的概率即得的分布列;
(2)先求出,再分別求出分別取2,3,4時(shí),各需化驗(yàn)的平均總次數(shù),即得相比方案一,化驗(yàn)次數(shù)最多可以平均減少的次數(shù).
(1)設(shè)每個(gè)人的血呈陰性反應(yīng)的概率為,則.
所以個(gè)人的血混合后呈陰性反應(yīng)的概率為,呈陽性反應(yīng)的概率為.
依題意可知,,
所以的分布列為:
(2)方案二中,結(jié)合(1)知每個(gè)人的平均化驗(yàn)次數(shù)為
,
所以當(dāng)時(shí),,
此時(shí)669人需要化驗(yàn)的總次數(shù)為462次;
當(dāng)時(shí),,
此時(shí)669人需要化驗(yàn)的總次數(shù)為404次;
當(dāng)時(shí),,
此時(shí)669人需要化驗(yàn)的總次數(shù)為397次.
即時(shí)化驗(yàn)次數(shù)最多,時(shí)次數(shù)居中,時(shí)化驗(yàn)次數(shù)最少,
而采用方案一則需化驗(yàn)669次.
故在這三種分組情況下,
相比方案一,當(dāng)時(shí)化驗(yàn)次數(shù)最多可以平均減少(次)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)若,,且存在不相等的實(shí)數(shù),使得,求證且.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】依據(jù)某地某條河流8月份的水文觀測點(diǎn)的歷史統(tǒng)計(jì)數(shù)據(jù)所繪制的頻率分布直方圖如圖(甲)所示;依據(jù)當(dāng)?shù)氐牡刭|(zhì)構(gòu)造,得到水位與災(zāi)害等級(jí)的頻率分布條形圖如圖(乙)所示.
試估計(jì)該河流在8月份水位的中位數(shù);
(1)以此頻率作為概率,試估計(jì)該河流在8月份發(fā)生1級(jí)災(zāi)害的概率;
(2)該河流域某企業(yè),在8月份,若沒受1、2級(jí)災(zāi)害影響,利潤為500萬元;若受1級(jí)災(zāi)害影響,則虧損100萬元;若受2級(jí)災(zāi)害影響則虧損1000萬元.
現(xiàn)此企業(yè)有如下三種應(yīng)對(duì)方案:
方案 | 防控等級(jí) | 費(fèi)用(單位:萬元) |
方案一 | 無措施 | 0 |
方案二 | 防控1級(jí)災(zāi)害 | 40 |
方案三 | 防控2級(jí)災(zāi)害 | 100 |
試問,如僅從利潤考慮,該企業(yè)應(yīng)選擇這三種方案中的哪種方案?說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】北京地鐵八通線西起四惠站,東至土橋站,全長18.964km,共設(shè)13座車站.目前八通線執(zhí)行2014年12月28日制訂的計(jì)價(jià)標(biāo)準(zhǔn),各站間計(jì)程票價(jià)(單位:元)如下:
四惠 | 3 | 3 | 3 | 3 | 4 | 4 | 4 | 5 | 5 | 5 | 5 | 5 | |
四惠東 | 3 | 3 | 3 | 4 | 4 | 4 | 5 | 5 | 5 | 5 | 5 | ||
高碑店 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 5 | 5 | p>5 | |||
傳媒大學(xué) | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 5 | 5 | ||||
雙橋 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 4 | |||||
管莊 | 3 | 3 | 3 | 3 | 4 | 4 | 4 | ||||||
八里橋 | 3 | 3 | 3 | 3 | 4 | 4 | |||||||
通州北苑 | 3 | 3 | 3 | 3 | 3 | ||||||||
果園 | 3 | 3 | 3 | 3 | |||||||||
九棵樹 | 3 | 3 | 3 | ||||||||||
梨園 | /p> | 3 | 3 | ||||||||||
臨河里 | 3 | ||||||||||||
土橋 | |||||||||||||
四惠 | 四惠東 | 高碑店 | 傳媒大學(xué) | 雙橋 | 管莊 | 八里橋 | 通州北苑 | 果園 | 九棵樹 | 梨園 | 臨河里 | 土橋 |
(Ⅰ)在13座車站中任選兩個(gè)不同的車站,求兩站間票價(jià)不足5元的概率;
(Ⅱ)甲乙二人從四惠站上車乘坐八通線,各自任選另一站下車(二人可同站下車),記甲乙二人乘車購票花費(fèi)之和為X元,求X的分布列;
(Ⅲ)若甲乙二人只乘坐八通線,甲從四惠站上車,任選另一站下車,記票價(jià)為元;乙從土橋站上車,任選另一站下車,記票價(jià)為元.試比較和的方差和大小.(結(jié)論不需要證明)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),討論極值點(diǎn)的個(gè)數(shù);
(2)若函數(shù)有兩個(gè)零點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四棱錐,,在平行四邊形中,,Q為上的點(diǎn),過的平面分別交,于點(diǎn)E、F,且平面.
(1)證明:;
(2)若,,Q為的中點(diǎn),與平面所成角的正弦值為,求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
已知曲線的極坐標(biāo)方程為,以極點(diǎn)為直角坐標(biāo)原點(diǎn),以極軸為軸的正半軸建立平面直角坐標(biāo)系,將曲線向左平移個(gè)單位長度,再將得到的曲線上的每一個(gè)點(diǎn)的橫坐標(biāo)縮短為原來的,縱坐標(biāo)保持不變,得到曲線
(1)求曲線的直角坐標(biāo)方程;
(2)已知直線的參數(shù)方程為,(為參數(shù)),點(diǎn)為曲線上的動(dòng)點(diǎn),求點(diǎn)到直線距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)、是空間兩條不同的直線,、是空間兩個(gè)不同的平面.給出下列四個(gè)命題:
①若,,,則;
②若,,,則;
③若,,,則;
④若,,,,則.
其中正確的是__________(填序號(hào)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】天津市某學(xué)校組織教師進(jìn)行“學(xué)習(xí)強(qiáng)國”知識(shí)競賽,規(guī)則為:每位參賽教師都要回答3個(gè)問題,且對(duì)這三個(gè)問題回答正確與否相互之間互不影響,若每答對(duì)1個(gè)問題,得1分;答錯(cuò),得0分,最后按照得分多少排出名次,并分一、二、三等獎(jiǎng)分別給予獎(jiǎng)勵(lì).已知對(duì)給出的3個(gè)問題,教師甲答對(duì)的概率分別為,,p.若教師甲恰好答對(duì)3個(gè)問題的概率是,則________;在前述條件下,設(shè)隨機(jī)變量X表示教師甲答對(duì)題目的個(gè)數(shù),則X的數(shù)學(xué)期望為________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com