【題目】為響應(yīng)黨的號召,堅(jiān)決打贏脫貧攻堅(jiān)戰(zhàn),某地區(qū)實(shí)行了幫扶單位定點(diǎn)幫扶扶貧村脫貧.為了解該地區(qū)貧困戶對其所提供的幫扶的滿意度,隨機(jī)調(diào)查了40個(gè)貧困戶,得到貧困戶的滿意度評分如下:
現(xiàn)按貧困戶編號從小到大的順序分組,用系統(tǒng)抽樣法從40名貧困戶中抽取容量為10的樣本.
(1)若在第一分段里隨機(jī)抽到的第一個(gè)樣本的評分?jǐn)?shù)據(jù)為81,記第二和第十個(gè)樣本的評分?jǐn)?shù)據(jù)分別為a,b,請寫出a,b的值;
(2)若10個(gè)樣本的評分?jǐn)?shù)據(jù)分別為92,84,86,78,89,74,83,78,77,89.請你計(jì)算所抽到的10個(gè)樣本的平均數(shù)和方差;
(3)在(1)條件下,若貧困戶的滿意度評分在之間,則滿意度等級為“A級”.試應(yīng)用樣本估計(jì)總體的思想,用(2)中的樣本數(shù)據(jù),估計(jì)在滿意度為“A級”的貧困戶中隨機(jī)地抽取2戶,所抽到2戶的滿意度評分均“超過80”的概率.
(參考數(shù)據(jù):,,)
【答案】(1),;(2)83;33;(3)0.3
【解析】
(1)根據(jù)系統(tǒng)抽樣的規(guī)則,第一組編號為3,則隨后k組的編號為,即可確定系統(tǒng)抽樣抽取的樣本編號,可得a,b的值;
(2)利用平均數(shù)和方差的計(jì)算公式進(jìn)行計(jì)算可得答案;
(3)先確定滿意度為“A級”的貧困戶的人數(shù),從中隨機(jī)抽取2戶,共有幾種可能,算得滿意度均超過“80分”的個(gè)數(shù),利用古典概型計(jì)算可得答案.
解:(1),
(2)
(3)在(2)的條件下
所以評分在.即滿意度為“A級”的貧困戶有84,86,78,84,78
從中隨機(jī)抽取2戶,共有以下10種可能
,,,,,,,,,
所以可算得滿意度均超過“80分”的概率為
所以可以估計(jì)在滿意度為“A級”的貧困戶中隨機(jī)抽取兩戶,打分均超過“80”分的概率約為0.3.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線過點(diǎn)且漸近線為,則下列結(jié)論錯誤的是( )
A.曲線的方程為;
B.左焦點(diǎn)到一條漸近線距離為;
C.直線與曲線有兩個(gè)公共點(diǎn);
D.過右焦點(diǎn)截雙曲線所得弦長為的直線只有三條;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在《周髀算經(jīng)》中,把圓及其內(nèi)接正方形稱為圓方圖,把正方形及其內(nèi)切圓稱為方圓圖.圓方圖和方圓圖在我國古代的設(shè)計(jì)和建筑領(lǐng)域有著廣泛的應(yīng)用.山西應(yīng)縣木塔是我國現(xiàn)存最古老、最高大的純木結(jié)構(gòu)樓閣式建筑,它的正面圖如圖所示.以該木塔底層的邊作方形,會發(fā)現(xiàn)塔的高度正好跟此對角線長度相等.以塔底座的邊作方形.作方圓圖,會發(fā)現(xiàn)方圓的切點(diǎn)正好位于塔身和塔頂?shù)姆纸?/span>.經(jīng)測量發(fā)現(xiàn),木塔底層的邊不少于米,塔頂到點(diǎn)的距離不超過米,則該木塔的高度可能是(參考數(shù)據(jù):)( )
A.米B.米C.米D.米
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】英國統(tǒng)計(jì)學(xué)家E.H.辛普森1951年提出了著名的辛普森悖論,下面這個(gè)案例可以讓我們感受到這個(gè)悖論.有甲乙兩名法官,他們都在民事庭和行政庭主持審理案件,他們審理的部分案件被提出上訴.記錄這些被上述案件的終審結(jié)果如下表所示(單位:件):
法官甲 | 法官乙 | ||||||
終審結(jié)果 | 民事庭 | 行政庭 | 合計(jì) | 終審結(jié)果 | 民事庭 | 行政庭 | 合計(jì) |
維持 | 29 | 100 | 129 | 維持 | 90 | 20 | 110 |
推翻 | 3 | 18 | 21 | 推翻 | 10 | 5 | 15 |
合計(jì) | 32 | 118 | 150 | 合計(jì) | 100 | 25 | 125 |
記甲法官在民事庭、行政庭以及所有審理的案件被維持原判的比率分別為,和,記乙法官在民事庭、行政庭以及所有審理的案件被維持原判的比率分別為,和,則下面說法正確的是
A. ,,B. ,,
C. ,,D. ,,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線過點(diǎn)且漸近線為,則下列結(jié)論錯誤的是( )
A.曲線的方程為;
B.左焦點(diǎn)到一條漸近線距離為;
C.直線與曲線有兩個(gè)公共點(diǎn);
D.過右焦點(diǎn)截雙曲線所得弦長為的直線只有三條;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,底面ABCD是矩形,側(cè)面PAD⊥底面ABCD,E為PA的中點(diǎn),過C,D,E三點(diǎn)的平面與PB交于點(diǎn)F,且PA=PD=AB=2.
(1)證明:;
(2)若四棱錐的體積為,則在線段上是否存在點(diǎn)G,使得二面角的余弦值為?若存在,求的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知直線的參數(shù)方程為(為參數(shù)).在以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸,且與直角坐標(biāo)系長度單位相同的極坐標(biāo)系中,曲線的極坐標(biāo)方程是.
(1)求直線的普通方程與曲線的直角坐標(biāo)方程;
(2)設(shè)點(diǎn).若直與曲線相交于兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是邊長為4的菱形,∠BAD=60°,對角線AC與BD相交于點(diǎn)O,四邊形ACFE為梯形,EF//AC,點(diǎn)E在平面ABCD上的射影為OA的中點(diǎn),AE與平面ABCD所成角為45°.
(Ⅰ)求證:BD⊥平面ACF;
(Ⅱ)求平面DEF與平面ABCD所成角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com