【題目】如圖,△ABC內(nèi)接于☉O,AB=AC,直線(xiàn)MN切☉O于點(diǎn)C,弦BD∥MN,AC與BD相交于點(diǎn)E.
(1)求證:△ABE≌△ACD;
(2)求證:BE=BC.
【答案】
(1)證明:∵BD∥MN,∴∠CDB=∠DCN.
又∠BAE=∠CDB,
∴∠BAE=∠DCN.
又直線(xiàn)MN是☉O的切線(xiàn),
∴∠DCN=∠CAD.
∴∠BAE=∠CAD.
又∠ABE=∠ACD,AB=AC,
∴△ABE≌△ACD.
(2)證明:∵∠EBC=∠BCM,∠BCM=∠BDC,
∴∠EBC=∠BDC.
∴CB=CD.
∵∠BEC=∠EDC+∠ECD,∠ECD=∠ABE,
∴∠BEC=∠EBC+∠ABE=∠ABC.
又AB=AC,
∴∠ABC=∠ECB.
∴∠BEC=∠ECB.
∴BE=BC.
【解析】本題主要考查了弦切角的性質(zhì),解決問(wèn)題的關(guān)鍵是根據(jù)弦切角的性質(zhì)(1)由已知,得∠ABE=∠ACD,只需證明∠BAE=∠CAD,轉(zhuǎn)化為證明∠BAE=∠CDB,∠CDB=∠DCN,∠DCN=∠CAD.(2)轉(zhuǎn)化為證明∠BEC=∠ECB.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=ax2-lnx。
(Ⅰ)當(dāng)a=時(shí),判斷f(x)的單調(diào)性;(Ⅱ)設(shè)f(x)≤x3+4x-lnx,在定義域內(nèi)恒成立,求a的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】有下列說(shuō)法: ①線(xiàn)性回歸分析就是由樣本點(diǎn)去尋找一條直線(xiàn),使之貼近這些樣本點(diǎn)的數(shù)學(xué)方法;②利用樣本點(diǎn)的散點(diǎn)圖可以直觀(guān)判斷兩個(gè)變量的關(guān)系是否可以用線(xiàn)性關(guān)系表示;③通過(guò)回歸方程 ,可以估計(jì)和觀(guān)測(cè)變量的取值和變化趨勢(shì);④因?yàn)橛扇魏我唤M觀(guān)測(cè)值都可以求得一個(gè)線(xiàn)性回歸方程,所以沒(méi)有必要進(jìn)行相關(guān)性檢驗(yàn).其中正確命題的個(gè)數(shù)是( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求在處的切線(xiàn)方程;
(2)設(shè)函數(shù),
(ⅰ)若函數(shù)有且僅有一個(gè)零點(diǎn)時(shí),求的值;
(ⅱ)在(ⅰ)的條件下,若,,求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知 函數(shù)f(x)=x3+(m﹣4)x2﹣3mx+(n﹣6)x∈R的圖象關(guān)于原點(diǎn)對(duì)稱(chēng),其中m,n為實(shí)常數(shù).
(1)求m,n的值;
(2)試用單調(diào)性的定義證明:f(x)在區(qū)間[﹣2,2]上是單調(diào)函數(shù);
(3)當(dāng)﹣2≤x≤2 時(shí),不等式f(x)≥(n﹣logma)logma恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義在(﹣1,1)上的奇函數(shù)f(x)是減函數(shù)滿(mǎn)足f(1﹣a)+f(1﹣2a)<0,則a的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)= +m為奇函數(shù),m為常數(shù).
(1)求實(shí)數(shù)m的值;
(2)判斷并證明f(x)的單調(diào)性;
(3)若關(guān)于x的不等式f(f(x))+f(ma)<0有解,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=m﹣
(1)若f(x)是R上的奇函數(shù),求m的值
(2)用定義證明f(x)在R上單調(diào)遞增
(3)若f(x)值域?yàn)镈,且D[﹣3,1],求m的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com