(本題滿分12分)若實(shí)數(shù)、、滿足,則稱比接近.
(1)若比3接近0,求的取值范圍;
(2)對任意兩個不相等的正數(shù)、,證明:比接近;
(3)已知函數(shù)的定義域.任取,等于和中接近0的那個值.寫出函數(shù)的解析式,并指出它的奇偶性、最值和單調(diào)性(結(jié)論不要求證明).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)
已知函數(shù)
(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
(2)求函數(shù)在區(qū)間上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題13分)已知函數(shù)
(1)判斷函數(shù)的奇偶性;
(2)若在區(qū)間是增函數(shù),求實(shí)數(shù)的 取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分14分)已知函數(shù)
(1)判斷的奇偶性并證明;
(2)若的定義域?yàn)閇](),判斷在定義域上的增減性,并加以證明;
(3)若,使的值域?yàn)閇]的定義域區(qū)間[]()是否存在?若存在,求出[],若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分13分)已知定義域?yàn)?i>R的函數(shù)是奇函數(shù).
(I)求a的值,并指出函數(shù)的單調(diào)性(不必說明單調(diào)性理由);
(II)若對任意的,不等式恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)已知函數(shù).
(Ⅰ)若的解集是,求實(shí)數(shù)的值;
(Ⅱ)若為整數(shù),,且函數(shù)在上恰有一個零點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本大題滿分12分)
某公司預(yù)計(jì)全年分批購入每臺價(jià)值為2000元的電視機(jī)共3600臺,每批都購入x臺,且每批均需付運(yùn)費(fèi)400元,儲存購入的電視機(jī)全年所付保管費(fèi)與每批購入電視機(jī)的總價(jià)值(不含運(yùn)費(fèi))成正比。若每批購入400臺,則全年需用去運(yùn)費(fèi)和保管費(fèi)43600元,F(xiàn)在全年只有24000元資金用于支付運(yùn)費(fèi)和保管費(fèi),請問能否恰當(dāng)安排每批進(jìn)貨的數(shù)量,使資金夠用?寫出你的結(jié)論并說明理由
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分) 已知函數(shù) ,x ∈[ 3 , 5 ] ,
(1)用定義證明函數(shù)的單調(diào)性;
(2)求函數(shù)的最大值和最小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分13分)已知函數(shù)
(1)畫出函數(shù)的圖象;
(2)利用圖象回答:當(dāng)為何值時,方程有一個解?有兩個解?有三個解?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com