已知函數(shù)f(x)=x3-7x+1.
(1)求在x=-1處的切線(xiàn)方程;
(2)求該切線(xiàn)與坐標(biāo)軸所圍成的三角形面積.

解:(1)依題意得,f'(x)=2x2-7
∴f'(-1)=2-7=-5又∵f(-1)=7
∴切點(diǎn)為(-1,7),切線(xiàn)斜率為-5
∴切線(xiàn)方程為:y-7=-5(x+1),即y=-5x+2
(2)在切線(xiàn)方程中,當(dāng)x=0時(shí),y=2;
當(dāng)y=0時(shí),x=,
∴切線(xiàn)與x,y軸的交點(diǎn)坐標(biāo)分別為:(,0),(0,2).
∴該切線(xiàn)與坐標(biāo)軸所圍成的三角形面積為:

分析:(1)根據(jù)曲線(xiàn)的解析式求出導(dǎo)函數(shù),把x=-1代入導(dǎo)函數(shù)中即可求出切線(xiàn)的斜率,根據(jù)切點(diǎn)的坐標(biāo)和求出的斜率寫(xiě)出切線(xiàn)的方程即可;
(2)由(1)得到切線(xiàn)l的方程;進(jìn)而求出切線(xiàn)l與兩坐標(biāo)軸的交點(diǎn)坐標(biāo),即可求出切線(xiàn)l與兩坐標(biāo)軸所圍成的三角形的面積.
點(diǎn)評(píng):此題考查學(xué)生會(huì)利用導(dǎo)數(shù)研究曲線(xiàn)上某點(diǎn)的切線(xiàn)方程,是一道綜合題.學(xué)生在解決此類(lèi)問(wèn)題一定要分清“在某點(diǎn)處的切線(xiàn)”,還是“過(guò)某點(diǎn)的切線(xiàn)”;同時(shí)解決“過(guò)某點(diǎn)的切線(xiàn)”問(wèn)題,一般是設(shè)出切點(diǎn)坐標(biāo)解決.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線(xiàn)y=f(x)在與x軸交點(diǎn)處的切線(xiàn)為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿(mǎn)足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:深圳一模 題型:解答題

已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線(xiàn)y=f(x)在與x軸交點(diǎn)處的切線(xiàn)為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿(mǎn)足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案