精英家教網 > 高中數學 > 題目詳情

(12分)

    已知橢圓中心在原點,焦點在x軸上,長軸長等于12,離心率為.

(Ⅰ)求橢圓的標準方程;

(Ⅱ)過橢圓左頂點作直線l垂直于x軸,若動點M到橢圓右焦點的距離比它到直線l的距離小4,求點M的軌跡方程.

 

【答案】

 

解(Ⅰ)設橢圓的半長軸長為a,半短軸長為b,半焦距為c.

   由已知,2a=12,所以a=6.            (1分)

,即a=3c,所以3c=6,即c=2.   …(3分)[

于是b2=a2-c2=36-4=32.   …………………(5分)

   因為橢圓的焦點在x軸上,

故橢圓的標準方程是.(6分)

 

【解析】略

 

練習冊系列答案
相關習題

科目:高中數學 來源:山東省濟寧市2012屆高二下學期期末考試理科數學 題型:解答題

(本小題滿分14分) 已知在平面直角坐標系xoy中的一個橢圓,它的中心在原

點,左焦

(1)求該橢圓的標準方程;

(2)若P是橢圓上的動點,求線段PA中點M的軌跡方程;

(3)過原點O的直線交橢圓于點B、C,求△ABC面積的最大值。

 

查看答案和解析>>

科目:高中數學 來源:2012屆山東省高二下學期期末考試理科數學 題型:解答題

(本小題滿分14分) 已知在平面直角坐標系xoy中的一個橢圓,它的中心在原

。

(1)求該橢圓的標準方程;

(2)若P是橢圓上的動點,求線段PA中點M的軌跡方程;

(3)過原點O的直線交橢圓于點B、C,求△ABC面積的最大值。

 

查看答案和解析>>

同步練習冊答案