已知曲線C:f(x)=x2,C上點(diǎn)A,An的橫坐標(biāo)分別為1和an(n=1,2,3…),且a1=5,數(shù)列{xn}滿足xn+1=tf(xn-1)+1(t>0),且().設(shè)區(qū)間Dn=[1,an](an>1)當(dāng)x∈Dn時(shí),曲線C上存在點(diǎn)Pn(xn,f(xn))使得點(diǎn)Pn處的切線與直線AAn平行.

(Ⅰ)證明:{logt(xn-1)+1}是等比數(shù)列;

(Ⅱ)當(dāng)Dn+1Dn對(duì)一切n∈N*恒成立時(shí),求t的取值范圍;

(Ⅲ)記數(shù)列{an}的前n項(xiàng)和為Sn,當(dāng)時(shí),試比較Sn與n+7的大小,并證明你的結(jié)論.

答案:
解析:

  (Ⅰ)∵由線在點(diǎn)Pn的切線與直線AAn平行,

  ∴  (1分)

  由  (2分)

  ∴

  即

  ∴是首項(xiàng)為2+1為首項(xiàng),公比為2的等比數(shù)列.  (4分)

  (Ⅱ)由(Ⅰ)得=(2+1)·2n-1,

  ∴

  從而an2xn-1=1+  (6分)

  由Dn+1Dn,得an+1<an,即(2t)2n<(2t).  (8分)

  ∴0<2t<1,即0<t  (9分)

  (Ⅲ)當(dāng)時(shí),  (10分)

  ∴

  不難證明:當(dāng)n≤3時(shí),2n-1≤n+1;當(dāng)n≥4時(shí),2n-1>n+1.  (11分)

  ∴當(dāng)n≤3時(shí),  (12分)

  當(dāng)n≥4時(shí),

    (13分)

  綜上所述,對(duì)任意的  (14分)


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知曲線C:f(x)=sin(x-
π2
)+ex+2
,則在x=0處切線方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知曲線C:f(x)=
1
3
x3+
4
3
,
(1)求曲線在點(diǎn)(2,4)處的切線方程;
(2)求過(guò)點(diǎn)(2,4)的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•徐州三模)已知曲線C:f(x)=x+
a
x
(a>0)
,直線l:y=x,在曲線C上有一個(gè)動(dòng)點(diǎn)P,過(guò)點(diǎn)P分別作直線l和y軸的垂線,垂足分別為A,B.再過(guò)點(diǎn)P作曲線C的切線,分別與直線l和y軸相交于點(diǎn)M,N,O是坐標(biāo)原點(diǎn).若△ABP的面積為
1
2
,則△OMN的面積為
4
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知曲線C:f(x)=
1
3
x3+
4
3
,
(1)求曲線在點(diǎn)(2,4)處的切線方程;
(2)求過(guò)點(diǎn)(2,4)的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知曲線C:f(x)=sin(x-
π
2
)+ex+2
,則在x=0處切線方程為 ______.

查看答案和解析>>

同步練習(xí)冊(cè)答案