設直線的方向向量是,平面的法向量是,則下列推理中
           ②
           ④
中正確的命題序號是              
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題


(本小題滿分12分)如圖,四邊形為矩形,平面ABE
 上的點,且,
  
(1)求證:平面;
(2)求證:平面
(3)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,長方體中,,中點,
中點.
(Ⅰ) 求證:;
(Ⅱ)求證:平面⊥平面

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

正三棱錐的底面邊長為,高為,則此棱錐的側(cè)面積等于(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

[理]如圖,在正方體中,是棱的中點,為平面內(nèi)一點,

(1)證明平面
(2)求與平面所成的角;
(3)若正方體的棱長為,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分10分)

在正方體中,E,F分別是CD,A1D1中點
(1)求證:AB1⊥BF;
(2)求證:AE⊥BF;
(3)棱CC1上是否存在點P,使BF⊥平面AEP,若存在,
確定點P的位置;若不存在,說明理由

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

((本小題滿分12分)在直三棱柱ABC—A1B1C1中,CA=CB=CC1=2,,E、F分別是BA、BC的中點,G是AA1上一點,且
(Ⅰ)確定點G的位置;
(Ⅱ)求三棱錐C1—EFG的體積.  

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在四棱錐P-ABCD中,底面ABCD是矩形,側(cè)棱PA垂直于底面,E、F分別是AB、PC的中點。 

⑴求證:CD⊥PD;  
⑵求證:EF∥平面PAD;
⑶若直線EF⊥平面PCD,求平面PCD與平面ABCD所成二面角的大小

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,多面體中,是梯形,,是矩形,面

(1)若是棱上一點,平面,求
(2)求二面角的平面角的余弦值.

查看答案和解析>>

同步練習冊答案