已知:如圖AD,BC,AE分別是⊙O的三條切線,切點(diǎn)分別是D,E,F(xiàn),AG是⊙O的一條割線,交⊙O于F,G兩點(diǎn),△ABC的周長(zhǎng)2
3
,⊙O的半徑為1.
(1)求證:AF•AG=3;
(2)求AF2+FG2的最大值.
考點(diǎn):與圓有關(guān)的比例線段
專題:選作題,立體幾何
分析:(1)先證明AD=AE,再利用切割線定理,即可證明AF•AG=3;
(2)設(shè)AF=x,表示出AF2+FG2,結(jié)合AF=x∈[1,
3
)
,即可求AF2+FG2的最大值.
解答: (1)證明:△ABC的周長(zhǎng)2
3
,得到AB+AC+BF+CF=2
3
,
又因?yàn)椋築F=BD,CF=CE,所以AD+AE=2
3
,
因?yàn)椋篈D=AE,所以AD=AE=
3

所以AF•AG=AD2=
3
2
=3
.--------------(5分)
(2)解:設(shè)AF=x,則AG=
3
x
FG=x-
3
x
,
所以AF2+FG2=2x2+
9
x2
-6
,
因?yàn)椤袿的半徑為1,得到AF=x∈[1,
3
)
,
所以AF2+FG2的最大值為5.--------------(10分)
點(diǎn)評(píng):本題考查切割線定理,考查學(xué)生的計(jì)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

拋物線y2=2x的焦點(diǎn)為F,其準(zhǔn)線經(jīng)過(guò)雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的左頂點(diǎn),點(diǎn)M為這兩條曲線的一個(gè)交點(diǎn),且|MF|=2,則雙曲線的離心率為( 。
A、
10
2
B、2
C、
5
D、
5
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,該程序運(yùn)行后的輸出結(jié)果為( 。
A、0B、3C、12D、-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,AB為⊙O的直徑,過(guò)點(diǎn)B作⊙O的切線BC,OC交⊙O于點(diǎn)E,AE的延長(zhǎng)線交BC于點(diǎn)D.
(1)求證:CE2=CD•CB;
(2)若AB=BC=2,求CE和CD的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在四面體ABCD中,O是BD的中點(diǎn),CA=CB=CD=BD=2,AB=AD=
2

(Ⅰ)求證:AO⊥平面BCD;
(Ⅱ)求二面角A-CD-B的正切值;
(Ⅲ)求點(diǎn)E到平面ACD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={m|m=n2-4n+5},B={n|m=
5-n
},求A∩B,A∪B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)A(2,8),B(x1,y1),C(x2,y2)在拋物線y2=2px,(p>0)上,△ABC的重心與此拋物線的焦點(diǎn)F重合(如圖)
(1)寫出該拋物線的方程和焦點(diǎn)F的坐標(biāo);
(2)求線段BC中點(diǎn)M的坐標(biāo);
(3)求BC所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某高校設(shè)計(jì)了一個(gè)實(shí)驗(yàn)學(xué)科的實(shí)驗(yàn)考查方案:考生從6道備選題中一次性隨機(jī)抽取3題,按照題目要求獨(dú)立完成全部實(shí)驗(yàn)操作.規(guī)定:至少正確完成其中2題的便可提交通過(guò).已知6道備選題中考生甲有4道題能正確完成,2道題不能完成;考生乙每題正確完成的概率都是
2
3
,且每題正確完成與否互不影響.
(Ⅰ)分別寫出甲、乙兩考生正確完成題數(shù)的數(shù)學(xué)期望;
(Ⅱ)試從兩位考生正確完成題數(shù)的數(shù)學(xué)期望及甲,乙能通過(guò)提交的概率,分析比較兩位考生的實(shí)驗(yàn)操作能力.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在正方體ABCD-A1B1C1D1中,E為BC的中點(diǎn),求:
(1)求異面直線C1E與BD 所成角的余弦值;
(2)求二面角C1-DE-C的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案