【題目】選修4-4:坐標系與參數方程
在直角坐標系中,已知曲線的參數方程為(為參數)。曲線的參數方程為(為參數),在以坐標原點為極點,軸正半軸為極軸建立極坐標系.
(1)求曲線,的極坐標方程;
(2)在極坐標系中,射線與曲線交于點,射線與曲線交于點,求的面積(其中為坐標原點).
科目:高中數學 來源: 題型:
【題目】如圖所示的是函數(,)在區(qū)間上的圖象,將該函數圖象各點的橫坐標縮小到原來的一半(縱坐標不變),再向右平移()個單位長度后,所得到的圖象關于直線對稱,則的最小值為( )
A. B. C. D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點是拋物線:上一點,且到的焦點的距離為.
(1)若直線與交于,兩點,為坐標原點,證明:;
(2)若是上一動點,點不在直線:上,過作直線垂直于軸且交于點,過作的垂線,垂足為.試判斷與中是否有一個為定值?若是,請指出哪一個為定值,并加以證明;若不是,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】關于函數 有以下四個命題:
①對于任意的,都有; ②函數是偶函數;
③若為一個非零有理數,則對任意恒成立;
④在圖象上存在三個點,,,使得為等邊三角形.其中正確命題的序號是__________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:()的左右頂點分別為,,點在橢圓上,且的面積為.
(1)求橢圓的方程;
(2)設直線不經過點且與橢圓交于,兩點,若直線與直線的斜率之積為,證明:直線過頂點.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某食品企業(yè)一個月內被消費者投訴的次數用表示,據統(tǒng)計,隨機變量的概率分布如列聯(lián)表.
(1)求的值和的數學期望;
(2)假設一月份與二月份被消費者投訴的次數互不影響求該企業(yè)在這兩個月內共被消費者投訴次的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖是美麗的“勾股樹”,它是一個直角三角形分別以它的每一邊向外作正方形而得到.圖一是第1代“勾股樹”,重復圖一的作法,得到圖二為第2代“勾股樹”,以此類推,已知最大的正方形面積為1,則第n代“勾股樹”所有正方形的面積的和為( )
A. nB. C. D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐中,⊥底面,⊥,∥,AD=DC=AP=2,AB=1,點E為棱PC的中點.
(1)證明:BE⊥DC;
(2)若F為棱PC上一點,滿足BF⊥AC,求二面角F-AB-P的余弦值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com