如圖,長方體ABCD—A1B1C1D1中,BB1=BC,P為C1D1上一點,則異面直線PB與B1C所成角的大。ā 。

A.是45°                              B.是60°

C.是90°                               D.隨P點的移動而變化

 

【答案】

C

【解析】

試題分析:畫出圖形,利用長方體的性質(zhì),三垂線定理推出BP⊥B1C,得到選項.解:∵D1C1⊥面BCC1B1,

∴BC1為BP在面BCC1B1內(nèi)的射影,又BC1=B1C,∴BC1⊥B1C,∴BP⊥B1C.異面直線PB與B1C所成角的大小90°.故選C.

考點:長方體的性質(zhì)

點評:本題主要考查長方體的性質(zhì)和求異面直線所成角的求法,三垂線定理的應用,考查空間想象能力,計算能力

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

19、如圖,長方體ABCD-A1B1C1D1中,AB=AD=1,AA1=2,點P為DD1的中點.
(1)求證:直線BD1∥平面PAC;
(2)求證:平面PAC⊥平面BDD1
(3)求證:直線PB1⊥平面PAC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

15、如圖,長方體ABCD-A1B1C1D1中被截去一部分,
(1)其中EF∥A1D1.剩下的幾何體是什么?截取的幾何體是什么?
(2)若FH∥EG,但FH<EG,截取的幾何體是什么?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖在長方體ABCD-A1B1C1D1中,其中AB=BC,E,F(xiàn)分別是AB1,BC1的中點,則以下結(jié)論中
①EF與BB1垂直;
②EF⊥平面BCC1B1;
③EF與C1D所成角為45°;
④EF∥平面A1B1C1D1
不成立的是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,長方體ABCD-A1B1C1D1中,P是線段AC的中點.
(1)判斷直線B1P與平面A1C1D的位置關(guān)系并證明;
(2)若F是CD的中點,AB=BC=1,且四面體A1C1DF體積為
2
12
,求三棱錐F-A1C1D的高.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)已知如圖:長方體ABCD-A1B1C1D1中,交于頂點A的三條棱長別為AD=3,AA1=4,AB=5.一天,小強觀察到在A處有一只螞蟻,發(fā)現(xiàn)頂點C1處有食物,于是它沿著長方體的表面爬行去獲取食物,則螞蟻爬行的最短路程是( 。
A、
74
B、5
2
C、4
5
D、3
10

查看答案和解析>>

同步練習冊答案