設(shè)為正實數(shù),函數(shù).
(1)若,求的取值范圍;(2)求的最小值;
(3)若,求不等式的解集.
(1);(2);(3)當時,解集為;當時,解集為.
解析試題分析:(1)由,結(jié)合解析式得及即可求出的取值范圍;(2)由已知函數(shù)的解析式可分和兩種情況,分別得和,結(jié)合二次函數(shù)的圖像和單調(diào)性可得和,從而有;(3)結(jié)合二次函數(shù)的圖像和一元二次不等式的解集寫出即可.
試題解析:(1)若,則 2分
(2)當時,
因為對稱軸,所以
當時,
因為對稱軸,所以
綜上 6分
(3)時,得
當即時,不等式的解為 8分
當即時,得
討論:當時,解集為 10分
當時,解集為 11分
綜上:當時,解集為;當時,解集為 12分.
考點:1.分段函數(shù);2.二次函數(shù)的最值;3.一元二次不等式;4.分類討論的思想.
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知定義域為R的函數(shù)f(x)=是奇函數(shù).
(1)求a,b的值.
(2)用定義證明f(x)在(-∞,+∞)上為減函數(shù).
(3)若對于任意t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求k的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
學(xué)校某研究性學(xué)習小組在對學(xué)生上課注意力集中情況的調(diào)查研究中,發(fā)現(xiàn)其在40分鐘的一節(jié)課中,注意力指數(shù)與聽課時間(單位:分鐘)之間的關(guān)系滿足如圖所示的圖像,當時,圖像是二次函數(shù)圖像的一部分,其中頂點,過點;當時,圖像是線段,其中,根據(jù)專家研究,當注意力指數(shù)大于62時,學(xué)習效果最佳.
(1)試求的函數(shù)關(guān)系式;
(2)教師在什么時段內(nèi)安排內(nèi)核心內(nèi)容,能使得學(xué)生學(xué)習效果最佳?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知,函數(shù).
(1)當時,畫出函數(shù)的大致圖像;
(2)當時,根據(jù)圖像寫出函數(shù)的單調(diào)減區(qū)間,并用定義證明你的結(jié)論;
(3)試討論關(guān)于x的方程解的個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知二次函數(shù)滿足,且.
(1)求解析式;
(2)當時,函數(shù)的圖像恒在函數(shù)的圖像的上方,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(Ⅰ)當a=3時,求函數(shù)在上的最大值和最小值;
(Ⅱ)求函數(shù)的定義域,并求函數(shù)的值域。(用a表示)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com