【題目】已知點P是圓F1:(x﹣1)2+y2=8上任意一點,點F2與點F1關于原點對稱,線段PF2的垂直平分線分別與PF1,PF2交于M,N兩點.
(1)求點M的軌跡C的方程;
(2)過點G(0, )的動直線l與點的軌跡C交于A,B兩點,在y軸上是否存在定點Q,使以AB為直徑的圓恒過這個點?若存在,求出點Q的坐標;若不存在,請說明理由.
【答案】(1) (2)在y軸上存在定點Q(0,﹣1),使以AB為直徑的圓恒過這個點.
【解析】試題分析:(1)由圓的方程求出F1、F2的坐標,結合題意可得點M的軌跡C為以F1,F2為焦點的橢圓,并求得a,c的值,再由隱含條件求得b,則橢圓方程可求;
(2)直線l的方程可設為 ,設A(x1,y1),B(x2,y2),聯(lián)立直線方程與橢圓方程,化為關于x的一元二次方程,利用根與系數的關系求出A,B橫坐標的和與積,假設在y軸上是否存在定點Q(0,m),使以AB為直徑的圓恒過這個點,可得 ,即 .利用向量的坐標運算即可求得m值,即定點Q得坐標.
試題解析:
(1)由圓F1:(x﹣1)2+y2=8,得F1(1,0),則F2(﹣1,0),
由題意得 ,
∴點M的軌跡C為以F1,F2為焦點的橢圓,
∵
∴點M的軌跡C的方程為;
(2)直線l的方程可設為,設A(x1,y1),B(x2,y2),
聯(lián)立 可得9(1+2k2)x2+12kx﹣16=0.
則+= , = ,
假設在y軸上是否存在定點Q(0,m),使以AB為直徑的圓恒過這個點,
則,即.
∵ ,
∴= + = +
∴ ,解得m=﹣1.
因此,在y軸上存在定點Q(0,﹣1),使以AB為直徑的圓恒過這個點.
科目:高中數學 來源: 題型:
【題目】一元二次不等式﹣x2+x+2>0的解集是( )
A.{x|x<﹣1或x>2}
B.{x|x<﹣2或x>1}
C.{x|﹣1<x<2}
D.{x|﹣2<x<1}
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本小題滿分13分)設關于的一元二次方程 ()有兩根和,且滿足.
(1)試用表示;
(2)求證:數列是等比數列;
(3)當時,求數列的通項公式,并求數列的前項和.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設向量 =(cosθ,sinθ), =(﹣ , );
(1)若 ∥ ,且θ∈(0,π),求θ;
(2)若|3 + |=| ﹣3 |,求| + |的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}的前n項和為Sn , 且滿足Sn=2an+n(n∈N*).
(1)求證數列{an﹣1}是等比數列,并求數列{an}的通項公式;
(2)若bn=log2(﹣an+1),求數列{ }的前n項和Tn .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某家庭進行理財投資,根據長期收益率市場調查和預測,投資債券等穩(wěn)鍵型產品A的收益與投資成正比,其關系如圖1所示;投資股票等風險型產品B的收益與投資的算術平方根成正比,其關系如圖2所示(收益與投資單位:萬元).
(1)分別將A、B兩種產品的收益表示為投資的函數關系式;
(2)該家庭現有10萬元資金,并全部投資債券等穩(wěn)鍵型產品A及股票等風險型產品B兩種產品,問:怎樣分配這10萬元投資,才能使投資獲得最大收益,其最大收益為多少萬元?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若函數f(x)=ax2﹣(2a+1)x+a+1對于a∈[﹣1,1]時恒有f(x)<0,則實數x的取值范圍是( )
A.(1,2)
B.(﹣∞,1)∪(2,+∞)
C.(0,1)
D.(﹣∞,0)∪(1,+∞)
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com