【題目】已知圓經過(25),(﹣2,1)兩點,并且圓心在直線yx.

1)求圓的標準方程;

2)求圓上的點到直線3x4y+230的最小距離.

【答案】(1)(x22+y1216

21

【解析】

1)先求出圓心的坐標和圓的半徑,即得圓的標準方程;(2)求出圓心到直線3x4y+230的距離即得解.

1)A(25),B(﹣21)中點為(0,3),

經過A(2,5),B(﹣2,1)的直線的斜率為

所以線段AB中垂線方程為,聯(lián)立直線方程y解得圓心坐標為(2,1),

所以圓的半徑.

所以圓的標準方程為(x22+y1216.

2)圓的圓心為(2,1),半徑r4.

圓心到直線3x4y+230的距離d.

則圓上的點到直線3x4y+230的最小距離為dr1.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知不經過原點的直線在兩坐標軸上的截距相等,且點在直線.

1)求直線的方程;

2)過點作直線,若直線,軸圍成的三角形的面積為2,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)(為常數(shù)),曲線在與軸的交點A處的切線與軸平行.

(1)的值及函數(shù)的單調區(qū)間;

(2)若存在不相等的實數(shù)使成立,試比較的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】f(x)="xln" x–ax2+(2a–1)xaR.

)令g(x)=f'(x),求g(x)的單調區(qū)間;

)已知f(x)x=1處取得極大值.求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,的直徑,點B上與A,C不重合的動點,平面.

1)當點B在什么位置時,平面平面,并證明之;

2)請判斷,當點B上運動時,會不會使得,若存在這樣的點B,請確定點B的位置,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,中,X、Y為直線BC上兩點(X、B、C、Y順次排列),使得.的外心分別為,直線AB、AC分別交于點U、V.證明:為等腰三角形.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),

1)試判斷函數(shù)的單調性;

2)是否存在實數(shù),使函數(shù)的極值大于?若存在,求的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在長方體ABCD-A1B1C1D1中(如圖),AD=AA1=1,AB=2,點E是棱AB的中點.

(1)求異面直線AD1EC所成角的大;

(2)《九章算術》中,將四個面都是直角三角形的四面體稱為鱉臑,試問四面體D1CDE是否為鱉臑?并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知以點CtR,t0)為圓心的圓與x軸交于點O和點A,與y軸交于點O和點B,其中O為原點.

1)求證:OAB的面積為定值;

2)設直線y=-2x4與圓C交于點M,N,若OMON,求圓C的方程.

查看答案和解析>>

同步練習冊答案