已知圓C:(x-a)2+(y-2)2=4(a>0)及直線l:x-y+3=0.當(dāng)直線l被圓C截得的弦長為2
2
時(shí),則a的值為( 。
A、1B、1或3
C、-3D、1或-3
考點(diǎn):直線與圓的位置關(guān)系
專題:直線與圓
分析:利用弦長公式可得弦心距d=
2
,再由點(diǎn)到直線的距離公式可得d=
|a-2+3|
2
,由此求得a的值.
解答: 解:由題意利用弦長公式可得弦心距d=
4-2
=
2
,再由點(diǎn)到直線的距離公式可得d=
|a-2+3|
2
,
2
=
|a-2+3|
2
,解得a=1,或 a=-3(舍去),
故選:A.
點(diǎn)評(píng):本題主要考查直線和圓相交的性質(zhì),點(diǎn)到直線的距離公式、弦長該公式的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an},若a2+a3+a7=6,則a1+a7=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行如圖所示的程序框圖.若輸入x=3,則輸出k的值是( 。
A、3B、4C、5D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足an=an-1-an-2(n≥3,n∈N*),它的前n項(xiàng)和為Sn.若S9=6,S10=5,則a1的值為( 。
A、-2B、-1C、1D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sin(θ+π)<0,cos(θ-π)>0,則θ是第( 。┫笙藿牵
A、一B、二C、三D、四

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合Ω={(x,y)|y=f(x)},若對(duì)于任意點(diǎn)P(x1,y1)∈Ω,總存在點(diǎn)Q(x2,y2)∈Ω(x2,y2不同時(shí)為0),使得x1•x2+y1•y2=0成立,則稱集合M是“正交對(duì)偶點(diǎn)集”.下面給出四個(gè)集合:
①Ω={(x,y)|y=|x-1|};    、讦={(x,y)|y=
3-x2
};
③Ω={(x,y)|y=ex-
1
2
};        ④Ω={(x,y)|y=tanx}
其中是“正交對(duì)偶點(diǎn)集”的序號(hào)是( 。
A、①②B、②C、③D、②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若實(shí)數(shù)x,y滿足不等式組
x-2≥0
x+y+1≥0
2x-y+1≥0
,則y-3x的最大值為( 。
A、-6B、-3C、-2D、-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

任意一個(gè)三位數(shù),百位數(shù)與個(gè)位數(shù)相加等于十位數(shù),求證:該三位數(shù)能被11整除.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某市對(duì)個(gè)體戶自主創(chuàng)業(yè)給予小額貸款補(bǔ)貼,每戶貸款額為2萬元,貸款期限有6個(gè)月、12個(gè)月、18個(gè)月、24個(gè)月、36個(gè)月五種,這五種貸款期限政府分別需要補(bǔ)助200元、300元、300元、400元、400元,現(xiàn)從2013年享受此項(xiàng)政策的個(gè)體戶中抽取了100戶進(jìn)行調(diào)查統(tǒng)計(jì),其貸款期限的頻數(shù)如下表:
貸款期限 6個(gè)月 12個(gè)月 18個(gè)月 24個(gè)月 36個(gè)月
頻數(shù) 20 a b 10 10
已知貸款期限為18個(gè)月的頻率為0.2.
(1)計(jì)算a,b的值;
(2)以上表各種貸款期限的頻率作為2014年個(gè)體戶選擇各種貸款期限的概率.某小區(qū)2014年共有3戶準(zhǔn)備享受此項(xiàng)政策,計(jì)算其中恰有兩戶選擇貸款期限為12個(gè)月的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案