下面給出四個命題:
①若a≥b>-1,則
a
1+a
b
1+b
;
②a<-1是一元二次方程ax2+2x+1=0有一個正根和一個負(fù)根的充分不必要條件;
③在數(shù)列{an}中,a1<a2<a3是數(shù)列{an}為遞增數(shù)列的必要不充分條件;
④方程(x+y-2)
x2+y2-9
=0
表示的曲線是一個圓和一條直線.
其中為真命題的是(  )
A.①②③B.①③④C.②④D.①②③④
①∵a(1+b)-b(1+a)=a-b≥0,∴a(1+b)≥b(1+a),
又a≥b>-1,∴1+a>0,1+b>0,
a
1+a
b
1+b
,因此正確;
②要使一元二次方程ax2+2x+1=0有一個正根和一個負(fù)根則
1
a
<0
,解得a<0,
因此a<-1是一元二次方程ax2+2x+1=0有一個正根和一個負(fù)根的充分不必要條件,故正確;
③在數(shù)列{an}中,數(shù)列{an}為遞增數(shù)列?an<an+1對于?n∈N*都成立.
因此a1<a2<a3是數(shù)列{an}為遞增數(shù)列的必要不充分條件;
④方程(x+y-2)
x2+y2-9
=0
可化為x+y=2或x2+y2=9,
表示的曲線是圓和一條直線.因此④正確.
綜上可知:①②③④都正確.
故選:D.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下列結(jié)論不正確的是( 。
A.若y=3,則y′=0B.若y=
1
x
,則y′=-
1
2
x
C.若y=-
x
,則y′=-
1
2
x
D.若y=3x,則y′=3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,正△ABC的中線AF與中位線DE相交于點G,已知△A′DE是△ADE繞邊DE旋轉(zhuǎn)形成的一個圖形,且A′∉平面ABC,現(xiàn)給出下列命題:
①恒有直線BC平面A′DE;
②恒有直線DE⊥平面A′FG;
③恒有平面A′FG⊥平面A′DE.
其中正確命題的序號為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)α,β,γ為兩兩不重合的平面,m,n為兩條不重合的直線,給出下列四個命題:
①若α⊥γ,βγ,則α⊥β;
②若α⊥γ,β⊥γ,則αβ;
③若mα,nα,則mn; 
④若m⊥α,n⊥α,則mn
其中真命題的是( 。
A.①④B.①③C.②④D.②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下列命題不正確的是( 。
A.若任意四點不共面,則其中任意三點必不共線
B.若直線l上有一點在平面β外,則l在平面β外
C.若一個平面內(nèi)的任一條直線都平行于另一個平面,則這兩個平面平行
D.若直線a,b,c中,a與b共面且b與c共面,則a與c共面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

給出下列五個命題:
①某班級一共有52名學(xué)生,現(xiàn)將該班學(xué)生隨機(jī)編號,用系統(tǒng)抽樣的方法抽取一個容易為4的樣本,已知7號,33號,46號同學(xué)在樣本中,那么樣本另一位同學(xué)的編號為23;
②一組數(shù)據(jù)1、2、3、4、5的平均數(shù)、眾數(shù)、中位數(shù)相同;
③一組數(shù)據(jù)a、0、1、2、3,若該組數(shù)據(jù)的平均值為1,則樣本標(biāo)準(zhǔn)差為2;
④根據(jù)具有線性相關(guān)關(guān)系的兩個變量的統(tǒng)計數(shù)據(jù)所得的回歸直線方程為
?
y
=ax+b中,b=2,
.
x
=1,
.
y
=3,則a=1;
⑤如圖是根據(jù)抽樣檢測后得出的產(chǎn)品樣本凈重(單位:克)數(shù)據(jù)繪制的頻率分布直方圖,已知樣本中產(chǎn)品凈重小于100克的個數(shù)是36,則樣本中凈重大于或等于98克,并且小于104克的產(chǎn)品的個數(shù)是90.
其中真命題為(  )
A.①②④B.②④⑤C.②③④D.③④⑤

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知不等式x+3≥0的解集是A,則使得a∈A是假命題的a的取值范圍是( 。
A.a(chǎn)≥-3B.a(chǎn)>-3C.a(chǎn)≤-3D.a(chǎn)<-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下列命題中,假命題是( 。
A.?x∈R,3x-2>0B.?x∈N*,(x-2)2>0
C.?x0∈R,lgx0<2D.?x0∈R,tanx0=2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知P是△ABC所在平面α外一點,O是點P在平面α內(nèi)的射影
(1)若P到△ABC的三個頂點的距離相等,則O是△ABC外心;
(2)若PA、PB、PC與平面α所成的角相等,則O是△ABC的內(nèi)心;
(3)若P到△ABC三邊距離相等,且O在△ABC的內(nèi)部,則O是△ABC的內(nèi)心;
(4)若平面PAB、PBC、PCA與平面α所成的角相等,且O在△ABC的內(nèi)部,則O是△ABC的外心;
(5)若PA、PB、PC兩兩垂直,則O是△ABC的垂心.
其中正確命題的序號是______(把你認(rèn)為正確命題的序號都寫上)

查看答案和解析>>

同步練習(xí)冊答案