已知在△ABC中,A>B,且tanA與tanB是方程x2-5x+6=0的兩個根.
(Ⅰ)求tan(A+B)的值;
(Ⅱ)若AB=5,求BC的長.
【答案】分析:先由根系關系得出tanA與tanB和與積,(I)由正切的和角公式代入求值;
(II)由A>B,以及A,B,A+B的正切值,解出相應角的正弦值,由正弦定理求線段BC的長.
解答:解:(Ⅰ)由所給條件,方程x2-5x+6=0的兩根tanA=3,tanB=2.(2分)
(4分)
=(6分)
(Ⅱ)∵A+B+C=180°,∴C=180°-(A+B).
由(Ⅰ)知,tanC=-tan(A+B)=1,
∵C為三角形的內角,∴(8分)
∵tanA=3,A為三角形的內角,∴,(10分)
由正弦定理得:(11分)
.(12分)
點評:考查的考點是一元二次方程的根的分布與同角三角函數(shù)的關系以及兩角和的正切公式,正弦定理.知識涉及較多,綜合性強.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知在△ABC中,A>B,且tanA與tanB是方程x2-5x+6=0的兩個根.
(Ⅰ)求tan(A+B)的值;
(Ⅱ)若AB=5,求BC的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知在△ABC中,a=2
3
,c=6,A=30°
,求△ABC的面積S.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知在△ABC中,∠A=120°,記
α
=
BA
|
BA
|cosA
+
BC
|
BC
|cosC
,
β
=
CA
|CA|
cosA
+
CB
|
CB
|sinB
CB
|
CB
|cosB
,則向量
α
β
的夾角為
120°
120°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知在△ABC中,a=2
3
,b=6,A=30°,解三角形.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知在△ABC中,a,b,c為內角A,B,C所對的邊長,r為內切圓的半徑,則△ABC的面積S=
1
2
(a+b+c)
•r,將此結論類比到空間,已知在四面體ABCD中,已知在四面體ABCD中,
S1,S2,S3,S4分別為四個面的面積,r為內切球的半徑
S1,S2,S3,S4分別為四個面的面積,r為內切球的半徑
,則
四面體ABCD的體積V=
1
3
(S1+S2+S3+S4).r
四面體ABCD的體積V=
1
3
(S1+S2+S3+S4).r

查看答案和解析>>

同步練習冊答案